Biological nanowires expedite future fuel production

March 30, 2011
Schematic comparison of a natural photosynthetic system and the hypothetical system to be constructed in this project (Biological nanowires expedite future fuel production). Credit: Zina Deretsky NSF

Scientists in the UK and US, including researchers at Arizona State University, have been awarded funding to improve the photosynthetic process as a means of producing renewable fuel.

This award will permit four transatlantic teams, one directed by ASU's Assistant Professor Anne Jones in the department of chemistry and biochemistry, to investigate methods to overcome the limited efficiency of . This will lead to ways of significantly increasing the yield of important crops for food production or sustainable bioenergy. Ensuring a stable energy supply is the central challenge of the 21st century.

The funding has been awarded by the US National Science Foundation (NSF) and the UK Biotechnology and Biological Sciences Research Council (BBSRC) in an unusual program designed to co-opt some of the best minds from the USA and UK to explore this important problem. Although photosynthesis is nature's means for capturing the sun's energy in plants, algae and other organisms, it has intrinsic limitations for major energy production.

"The project represents a radical approach to augment and surpass photosynthetic strategies observed in nature by engineering modular division of labor through electrical connectivity," says Jones who is also from the College of Liberal Arts and Sciences and the Center for and Photosynthesis at ASU.

"A simple analogy is a power plant unconnected to the distribution grid. Unconnected, excess energy goes to waste, and this is what currently happens in when they are overwhelmed with light. However, engineering of transmission lines allows energy to be utilized and stored elsewhere. In this project, we will set up conductive transmission lines between the photosynthetic apparatus in one species and the fuel-producing metabolism of a second species to funnel excess energy directly into fuel production."

The strategy is to create a trans-cellular, plug-and-play platform that allows the team to shunt electrons from photosynthetic source cells to independently engineered modules along biological nanowires.

"Photosynthesis is essential for life on Earth," says Joann Roskoski, NSF's Acting Assistant Director for Biological Sciences. "By providing food and generating oxygen, it has made our planet hospitable for life. This process is also critical in addressing the food and fuel challenges of the future. For decades, NSF has invested in photosynthesis research projects that range from biophysical studies to ecosystem analyses at a macroscale. The Ideas Lab in photosynthesis was an opportunity to stimulate and support different types of projects than what we have in our portfolio in order to address a critical bottleneck to enhancing the photosynthetic process."

"This is hugely ambitious research, but if the scientists we are supporting can achieve their aims it will be a profound achievement," explains Professor Janet Allen, Director of Research at BBSRC.

Other members of Jones's team in the US are John Golbeck from Penn State University, David Kramer from Michigan State University and Ichiro Matsumura from Emory University School of Medicine. Lee Cronin, from the University of Glasgow, Scotland, will direct the British part of the team including also Travis Bayer at Imperial College London and Thomas Bibby from the University of Southampton.

This project integrates diverse disciplines to address a critical limitation in the efficiency of photosynthesis, and along the way will advance both fundamental and applied knowledge in the areas of synthetic biology, inorganic and biosynthetic chemistry, protein engineering, electron transfer, energy storage, photosynthetic physiology and integration of novel traits into organisms.

Explore further: 'Extreme' genes shed light on origins of photosynthesis

Related Stories

'Extreme' genes shed light on origins of photosynthesis

December 11, 2009

(PhysOrg.com) -- While most school children understand that green plants photosynthesize, absorb carbon dioxide and produce oxygen, few people consider the profound global-scale effects that photosynthesis has had on Earth. ...

Renewable hydrogen energy - an answer to the energy crisis

April 19, 2007

Harvesting solar energy to produce renewable, carbon free and cost effective hydrogen as an alternative energy source is the focus of a new £4.2 million research programme at Imperial College London, it is announced.

Scientists unlock mystery in photosynthesis step

February 19, 2010

(PhysOrg.com) -- An international team of scientists, including two from Arizona State University, have taken a significant step closer to unlocking the secrets of photosynthesis, and possibly to cleaner fuels.

Recommended for you

Canada conservationist warns of 'cyber poaching'

February 25, 2017

Photographers, poachers and eco-tour operators are in the crosshairs of a Canadian conservationist who warns that tracking tags are being hacked and misused to harass and hunt endangered animals.

How proteins reshape cell membranes

February 24, 2017

Small "bubbles" frequently form on membranes of cells and are taken up into their interior. The process involves EHD proteins - a focus of research by Prof. Oliver Daumke of the MDC. He and his team have now shed light on ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.