
 

Minimizing communication between cores
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In the mid-1990s, Matteo Frigo, a graduate student in the research group
of computer-science professor Charles Leiserson (whose work was
profiled in the previous installment in this series), developed a parallel
version of a fast Fourier transform (FFT). One of the most frequently
used classes of algorithms in computer science, FFTs are useful for
signal processing, image processing, and data compression, among other
things.

Steven Johnson, then a graduate student in physics, was using Fourier
transforms to solve differential equations and needed FFT software that
would run on multiple machines, including parallel machines. “Matteo
says, ‘Steven, I have the code for you,’” says Johnson, now an associate
professor of applied mathematics. “This is fast and parallel and so forth.
I didn’t take his word for it. I took it and I downloaded a half a dozen
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other FFT programs on the Web, and I benchmarked them on three or
four machines, and I made a graph, and I put it up on my Web page. His
code was pretty fast, but sometimes faster, sometimes slower than the
other codes. His wife said he came home that day and said, ‘Steven put
up a Web page that said my code wasn’t the fastest. This has to change.’”

Together, Johnson and Frigo went on to develop software called the
fastest Fourier transform in the West, or FFTW, which is, indeed,
among the fastest implementations of FFT algorithms for general-
purpose computers.

Most FFTs use the divide-and-conquer approach described in the last
article in this series: data — an incoming audio or video signal, or an
image, or a mathematical description of a physical system — is split into
smaller parts, whose Fourier transforms are calculated; but those
calculations in turn rely on splitting the data into smaller chunks and
calculating their Fourier transforms, and so on.

A program that performed all the steps of the FFT calculation in their
natural order — splitting the problem into smaller and smaller chunks
and then assembling the solution from the bottom up — would end up
spending much of its time transferring data between different types of
memory. Much of the work that went into FFTW involved maximizing
the number of steps a single core could perform without having to
transfer the results.
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MIT researchers developed one of the fastest software implementations of the
Fourier transform, a technique for splitting a signal into its constituent
frequencies. Graphic: Christine Daniloff

The parallel implementation of FFTW compounds the communication
problem, because cores working on separate chunks of the calculation
also have to exchange information with each other. If the chunks get too
small, communication ends up taking longer than the calculations, and
the advantages of parallelization are lost. So every time it’s called upon
to run on a new machine, FFTW runs a series of tests to determine how
many chunks, of what type, to split the data into at each stage of the
process, and how big the smallest chunks should be. FFTW also includes
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software that automatically generates code tailored to chunks of specific
size. Such special-purpose code maximizes the efficiency of the
computations, but it would be prohibitively time consuming to write by
hand.

According to Jonathan Ragan-Kelley, a graduate student in the
Computer Graphics Group at the Computer Science and Artificial
Intelligence Laboratory, “Real-time graphics has been probably the most
successful mass-market use of parallel processors.” Because updates to
different regions of a two-million-pixel image can be calculated largely
independently of each other, graphics naturally lends itself to parallel
processing. “Your 3-D world is described by a whole bunch of triangles
that are made up of vertices, and you need to run some math over all
those vertices to figure out where they go on screen,” Ragan-Kelley says.
“Then based on where they go on screen, you figure out what pixels they
cover, and for each of those covered pixels, you have to run some other
program that computes the color of that pixel.” Moreover, he says,
computing the color of a pixel also requires looking up the texture of the
surface that the pixel represents, and then calculating how that texture
would reflect light, given the shadows cast by other objects in the scene.
“So you have lots of parallelism, over the vertices and over the pixels,”
Ragan-Kelley says.

If a parallel machine were to complete each of the stages in the graphics
pipeline — the myriad computations that constitute triangle
manipulation, pixel mapping, and color calculation — before the next
stage began, it would run into the same type of problem that FFT
algorithms can: it would spend much of its time just moving data around.
Some commercial graphics software — say, the software that generates
images on the Microsoft Xbox — is designed to avoid this problem
when it encounters calculations that arise frequently — say, those typical
of Xbox games. Like FFTW, the software executes as many successive
steps as it can on a single core before transferring data. But outside the
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narrow range of problems that the software is tailored to, Ragan-Kelley
says, “you basically have to give up this optimization.” Ragan-Kelley is
investigating whether software could be designed to apply the same type
of efficiency-enhancing tricks to problems of graphical rendering
generally, rather than just those whose structure is known in advance.

At the International Solid-State Circuits conference in San Diego in
February 2011, professor of electrical engineering Anantha
Chandrakasan and Vivienne Sze, who received her PhD from MIT the
previous spring, presented a new, parallel version of the H.264 video 
algorithm, a staple of most computer video systems. Rather than storing
every pixel of every frame of video separately, software using the H.264
standard stores a lot of information about blocks of pixels. For instance,
one block might be described as simply having the same color value as
the block to its left, or the one below it; another block of pixels might be
described as moving six pixels to the right and five down from one
frame to the next. Information about pixels ends up taking up less
memory than the values of the pixels themselves, which makes it easier
to stream video over the Internet.

In all, H.264 offers about 20 different ways to describe pixel blocks, or
“syntax elements.” To save even more space in memory, the syntax
elements are subjected to a further round of data compression. Syntax
elements that occur frequently are encoded using very short sequences of
bits; syntax elements that occur infrequently are encoded using longer
sequences of bits.

During playback, however, H.264 has to convert these strings of bits into
the corresponding syntax elements. Although today’s high-definition TVs
are able to decode the syntax elements sequentially without intolerable
time lags, the TVs of tomorrow, with more than 10 times as many pixels,
won’t be. Sze and Chandrakasan devised a way to assign the decoding of
different types of syntax elements to different cores. Their proposal is
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currently under review with the MPEG and ITU-T standards bodies, and
it could very well end up being incorporated into future video standards.

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching. 

  More information: Computer chips’ clocks have stopped getting faster.
To maintain the regular doubling of computer power that we now take for
granted, chip makers have been giving chips more “cores,” or processing
units. But how to distribute computations across multiple cores is a hard
problem, and this five-part series of articles examines the different levels
at which MIT researchers are tackling it, from hardware design up to the
development of new programming languages. 

Designing the hardware - www.physorg.com/news217669712.html
The next operating system - www.physorg.com/news/2011-02-t …
perating-system.html
Retooling algorithms - www.physorg.com/news/2011-02-r … ling-
algorithms.html
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