National study explores the reaction and transport of tungsten in drinking water

January 27, 2011, Kansas State University

A Kansas State University scientist is digging deep to solidify information about potential tungsten contamination in the nation's groundwater and aquifers.

Tungsten is a naturally occurring metallic element that in its alloy or solid form is primarily used for incandescent lightbulb filaments and X-ray tubes.

In an effort to limit toxins in the environment, tungsten is replacing lead in fishing weights and in ammunition for hunting and recreational shooting. The military is substituting tungsten in its high penetrators and small arms ammunition, as well as other ammunitions.

"Tungsten originally was thought to be nontoxic, as it was believed to be an inert metal of low environmental mobility," said Saugata Datta, assistant professor of geology at K-State. "But tungsten is a contaminant in groundwater and a growing concern."

Scientists and health officials began connecting tungsten to clusters of cases in the Western U.S. after finding high concentrations of the element in residents' bodies. People examined lived in towns near tungsten-bearing ore deposits and even hard metal processing plants. Drinking water in these areas has an elevated concentration of tungsten.

" studies have shown tungsten can be toxic and even carcinogenic," Datta said. "Because of this, we need to understand tungsten's in the environment, about which very little is known."

To find out how tungsten reacts and relates to groundwater and the surrounding environment -- referred to as biogeochemistry -- Datta recently began collaborating with Karen Johannesson, professor of earth and environmental sciences at Tulane University.

Their research is being funded by a three-year grant issued by the Hydrology Division of the National Science Foundation in fall 2010.

The project investigates the biogeochemistry of tungsten reaction and transport in the environment. More specifically it's an evaluation of how tungsten concentrations change along groundwater flow paths and modify the groundwater makeup.

When tungsten is exposed to oxygen -- a process called oxidation -- it often seeps into the ground and even into groundwater-bearing aquifers. During this process the can also mix with organic matter present in natural soils. In the presence of sulfur rich solutions, it forms thiotungstate complexes, which are also toxic.

To gather information the researchers are looking at pristine aquifers, like the Ogallala, as well as affected aquifers. Data from these findings can be used to create a conceptual model for this project and future studies, Datta said.

"Looking at emerging contaminants is one of the biggest things for an environmental geoscientist, and health is a big issue connected to any elemental or environmental study we do," Datta said.

"We are trying to approach this project from the standpoint of understanding this element and its behaviors in the environment before taking our findings to the general public so the situation can be addressed," he said.

Datta's previous work studied arsenic levels in the groundwater in West Bengal, India, and Bangladesh. Along with a K-State graduate student, he looked at why naturally occurring arsenic -- another toxin in nature -- got into from river-borne sediments, and finding well locations for cleaner water.

Explore further: Surprising new health and environmental concerns about tungsten

Related Stories

Study finds link between metals and cancer

April 28, 2006

Researchers studying the effects of arsenic and tungsten on pregnant mice may have found a clue to the development of leukemia in 17 children in Fallon, Nev.

Uniform tungsten trimers stand and deliver

September 18, 2006

Like tiny nano-soldiers on parade, the cyclic tungsten trioxide clusters line up molecule-by-molecule on the titanium dioxide platform. One tungsten atom from each cluster is raised slightly, holding forth the potential to ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rwinners
5 / 5 (2) Jan 28, 2011
We are doomed... not by an asteroid, but by ourselves. Tungsten is use in lots of things, from drill bits to sand paper. Even tungsten carbide rings, as advertised on this page.

DOOOMED I TELL YOU!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.