Getting more anti-cancer medicine into the blood

January 26, 2011

Scientists are reporting successful application of the technology used in home devices to clean jewelry, dentures, and other items to make anticancer drugs like tamoxifen and paclitaxel dissolve more easily in body fluids, so they can better fight the disease. The process, described in ACS' journal, Langmuir, can make other poorly soluble materials more soluble, and has potential for improving the performance of dyes, paints, rust-proofing agents and other products.

In the report, Yuri M. Lvov and colleagues point out that many drugs, including some of the most powerful anti-cancer medications, have low solubility in water, meaning they do not dissolve well. IV administration of large amounts can lead to clumping that blocks small , so doses sometimes must be kept below the most effective level. In addition, drug companies may discontinue work on very promising potential new drugs that have low solubility. The scientists note numerous efforts to improve the solubility of such medications, none of which have been ideal.

The scientists describe using sonification, high-pitched like those in home ultrasonic jewelry and denture cleaners, to break anti-cancer drugs into particles so small that thousands would fit across the width of a human hair. Each particle of that power then gets several coatings with natural polysaccharides that keep them from sticking together. The technique, termed nanoencapsulation, worked with several widely used anti-cancer drugs, raising the possibility that it could be used to administer more-effective doses of the medications. The report also described successful use to increase the solubility of ingredients in rust proofing agents, paints, and dyes.

Explore further: Tiny delivery system with a big impact on cancer cells

More information: "Converting Poorly Soluble Materials into Stable Aqueous Nanocolloids" Langmuir.

Related Stories

Tiny delivery system with a big impact on cancer cells

December 15, 2008

Researchers in Pennsylvania are reporting for the first time that nanoparticles 1/5,000 the diameter of a human hair encapsulating an experimental anticancer agent, kill human melanoma and drug-resistant breast cancer cells ...

Soft drink could enhance effects of an anti-cancer drug

October 13, 2010

Experiments with an artificial stomach suggest that a popular lemon-lime soft drink could play an unexpected role in improving the effectiveness of an oral anticancer drug. The experiments produced evidence that patients ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

Pulling iron out of waste printer toner

November 15, 2017

Someday, left-over toner in discarded printer cartridges could have a second life as bridge or building components instead of as trash, wasting away in landfills and potentially harming the environment. One group reports ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.