Optical water quality assessment

December 14, 2010, American Society of Agronomy
This is groundwater flowing into the upper watershed of the McKenzie River in Oregon. Credit: Tamara Kraus

Scientists at the U.S. Geological Survey (USGS) have proven that measuring fluorescence could improve source water monitoring during a study of the McKenzie River in Oregon. The study was designed to assess the amount, type and source of dissolved organic carbon that exists in all sources of drinking water.

Dissolved can react with chlorine during water treatment and form halogenated compounds, commonly referred to as . Some of these byproducts are regulated by the U.S. , but a lack of strict controls and guidelines underscores the need for better understanding of sources for dissolved organic carbon. Measuring optical properties allows for researches to account for concentration, composition, and source of dissolved organic carbon, as well as its propensity to form disinfection byproducts.

In 2007 and 2008, water samples from the McKenzie River mainstream, tributaries and reservoir outflow were analyzed by scientists from the USGS in collaboration with the Eugene Water and Electric Board. Optical measurements assessed the full spectrum of fluorescence and absorption to provide an understanding of dissolved organic carbon properties and patterns, and to ascertain the benefits of using such measurements.

Results indicated sources of dissolved organic carbon and disinfection byproducts precursors originated upstream. They are most likely the consequence of human activity and are strongly linked to changes in the flow path of the . Downstream tributaries did contain higher dissolved organic carbon concentrations; however they comprise less than 5% of the mainstream flow and therefore do not have a significant impact on drinking water.

Although there was interference while measuring the absorbance spectra, the study presented conclusive evidence illustrating the value of measuring optical properties.

"Optical measurements have the potential to be less expensive, faster, and more sensitive than laboratory chemical-based analyses," says Tamara Kraus, one of the authors of the study.

According to Kraus, instruments that measure have recently been developed and have the potential to help water utilities to understand the trends in water quality. She suggests that it would be more feasible and cost effective to lower the amount of precursors than establishing additional water treatment technologies.

Explore further: Study: Fallen leaves found less polluting

More information: The full study is available in the November-December 2010 issue of the Journal of Environmental Quality. www.agronomy.org/publications/ … /abstracts/39/6/2100

Related Stories

Mangroves importance and decline studied

February 27, 2006

Scientists say mangroves, the backbone of tropical ocean coastlines, are far more important to the global ocean's biosphere than previously thought.

Recommended for you

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.