

Real-world programming in the classroom

October 28 2010, By Larry Hardesty

Computer science professors Saman Amarasinghe, left, and Charles Leiserson co-
teach a class called Performance Engineering of Software Systems, where
students' code is reviewed by volunteer Boston-area programmers. Photo: Patrick
Gillooly

In undergraduate computer-science classes, homework assignments are
usually to write programs, and students are graded on whether the
programs do what they're supposed to. Harried professors and teaching
assistants can look over the students' code and flag a few common and
obvious errors, but they rarely have the time coach the students on
writing clear and concise code.

In the real world, however, code clarity is as important as software
performance. Large software projects can involve hundreds of
programmers, each working on a small corner of an application, and
over the course of a project, personnel turnover can be high. Testing,

1/5

https://phys.org/tags/software+performance/
https://phys.org/tags/software+performance/
https://phys.org/tags/programmers/

revising and updating software may require people to review code that
they had no hand in writing. If the code isn’t intelligible, engineers can
waste a huge amount of time just figuring out how an existing program
does what it does.

Professors of computer science Charles E. Leiserson and Saman
Amarasinghe, who co-teach a class called Performance Engineering of
Software Systems, believe that undergraduates should be taught to write
clear code, not just running code. So this fall, for the second year in a
row, students in the class won’t just have their projects graded by their
teaching assistants; they’ll also have their code reviewed by senior
programmers from the Boston area, who volunteer their time through a
program that Amarasinghe and Leiserson call Masters in the Practice of
Software Systems Engineering, or MITPOSSE.

The roughly 70 students in the class work on four major projects a
semester, in two-person teams. After each project is submitted, students
from separate teams are paired, and each pair meets with one of the
professional programmers for a code review. The code review lasts
between 60 and 90 minutes, and each of the 20-odd professionals meets
with two pairs of students. The code reviews don’t count toward the
students’ final grades, but they are mandatory.

The mother of invention

Leiserson and Amarasinghe introduced the class, which they teach only
in the fall, three years ago. The first year, enrollment was lower than it is
now, and the professors decided to hold their own half-hour code
reviews with individual students after each project. “That killed us,”
Leiserson says. “Even though we had a small class at the time, it was
clearly not scalable.” So in the summer of 2009, Amarasinghe and
Leiserson put the word out among friends and colleagues, former
students, and members of the Computer Science and Artificial

2/5

https://phys.org/tags/students/

Intelligence Laboratory’s Industry Affiliates Program that they were
recruiting seasoned programmers to serve as mentors to their students in
the fall. “We got a tremendous response,” Leiserson says. Indeed, in both
2009 and 2010, the professors had to turn away applicants to the
program. To Amarasinghe and Leiserson’s knowledge, theirs is the first
computer science class in the country to incorporate code review with
professional software engineers.

According to Amarasinghe, the chief purpose of the MITPOSSE
program is to help students develop their own programming styles. By
“style” he means things like selecting names for variables, so that it’s
clear to later readers what they refer to; avoiding the use of so-called
“magic numbers,” numerals that are simply inserted into equations
without explanation (the better practice, Amarasinghe explains, is to
assign the number a name that indicates its purpose, and then use the
name in subsequent equations); indenting lines of code; and, most
important, adding comments — lines of text that appear next to the
program code and explain what it’s doing, but which the computer
ignores when converting code into an executable program.

In many computer-science classes, Amarasinghe says, professors trying
to preserve intelligibility will insist on a particular style of coding, which
may not be natural for some students and, he says, can actually lead to
bad code. “The way we look at programming, it’s like writing an English
paper,” he says. “If you are in English class, there’s no set way of
writing.” What’s important is that a programmer’s style be consistent, not
that it slavishly ape some model.

Less is more

Of course, all computer-science professors emphasize the importance of
good comments, but busy students usually try to get their programs
working and then stick in comments in whatever time they have left.

3/5

Reid Kleckner, who took Amarasinghe and Leiserson’s class as an
undergraduate last year and, as a master’s candidate, is a teaching
assistant this year, says that the MITPOSSE reviews can help some
students get a better grasp of the purpose of comments. “Usually,
students hear, ‘Comment your code,’ and they say okay, line by line,
‘This is what this line does, this is what this line does.’” But, Kleckner
explains, comments are in fact more useful when they are spare and
descriptive. A program might, for instance, include some clever but
obscure procedure that makes it run more efficiently. Simply
commenting in the margin that, say, the procedure rounds a number up
to the nearest power of two may be all the information the reader needs.
“You don’t need to say, here are the arithmetic operations that I am
performing, and they achieve this result. Here’s my mathematical proof,”
Kleckner says.

Moreover, Kleckner says, with the MITPOSSE approach, “It’s not just
graduate students telling you how to write code. It’s coming from a
figure of authority, in some sense.” He laughs and adds, “Not that the
T.A. is not a figure authority.” But a T.A. is not a prospective employer.

Indeed, for the mentors, some of the appeal of volunteering for the
program may very well be the opportunity to scout talent. So Leiserson
and Amarasinghe have drawn up a set of rules that the mentors agree to
abide by, including “no recruiting, hints at job opportunities, offers of
summer internships, lab tours, free dinners, etc.,” until “the semester is
over and no power relationship exists.”

But many of the mentors simply find the work intrinsically satisfying.
Barry Perlman, who as an independent software consultant doesn’t have
any job vacancies to fill, volunteered with the program last year and
came back again this year. “I felt like I was doing something useful,” he
says. “The world doesn’t need more software engineers; the world needs
better software engineers.” Andrew Lamb, too, has joined the

4/5

MITPOSSE for a second year in a row. He works for a small software
company, and though he acknowledges that “it’s nice to get that name
out there,” the company isn’t currently looking for any new hires. But,
Lamb says, “when they have some question and I’m able to answer it,
and their eyes light up, and they say, ‘I get it, I get it,’ that’s very cool.”

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Real-world programming in the classroom (2010, October 28) retrieved 20 April 2024
from https://phys.org/news/2010-10-real-world-classroom.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://web.mit.edu/newsoffice/
https://phys.org/news/2010-10-real-world-classroom.html
http://www.tcpdf.org

