Nanotube thermopower: Efforts to store energy in carbon nanotubes described

October 20, 2010

When weighing options for energy storage, different factors can be important, such as energy density or power density, depending on the circumstances. Generally batteries -- which store energy by separating chemicals -- are better for delivering lots of energy, while capacitors -- which store energy by separating electrical charges -- are better for delivering lots of power (energy per time). It would be nice, of course, to have both.

Today at the AVS 57th International Symposium & Exhibition, which takes place this week at the Albuquerque Convention Center in New Mexico, Michael Strano and his colleagues at MIT will report on efforts to store energy in thin carbon nanotubes by adding fuel along the length of the tube, chemical energy, which can later be turned into electricity by heating one end of the nanotubes. This thermopower process works as follows: the heat sets up a chain reaction, and a wave of conversion travels down the nanotubes at a speed of about 10 m/s.

"Carbon nanotubes continue to teach us new things -- thermopower waves as a first discovery open a new space of power generation and reactive wave physics," Strano says.

A typical lithium ion battery has a power density of 1 kW/kg. Although the MIT researchers have yet to scale up their nanotube materials, they obtain discharge pulses with power densities around 7 kW/kg.

Strano will also be reporting new results on experiments exploiting carbon nanopores of unprecedented size, 1.7 nm in diameter and 500 microns long.

"Carbon nanopores," he says, "allow us to trap and detect single molecules and count them one by one," the first time this has been done. And this was at room temperature.

The single molecules under study can move across the nanotubes one at a time in a process called coherence resonance. "This has never been shown before for any inorganic system to date," says Strano, "but it underpins the workings of biological ion channels."

Explore further: Environmentally safe fuel cells may emerge from new research

More information: The presentation, "New Concepts in Molecular and Energy Transport Within Carbon Nanotubes: Thermopower Waves and Stochastically Resonant Ion Channels" is at 4:40 p.m. on Tuesday, October 19, 2010. ABSTRACT: www.avssymposium.org/Open/SearchPapers.aspx?PaperNumber=NS-TuA-9

Related Stories

MIT researchers discover new way of producing electricity

March 7, 2010

(PhysOrg.com) -- A team of scientists at MIT have discovered a previously unknown phenomenon that can cause powerful waves of energy to shoot through minuscule wires known as carbon nanotubes. The discovery could lead to ...

Researchers develop a way to funnel solar energy

September 12, 2010

(PhysOrg.com) -- Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could form antennas ...

Recommended for you

Research comes through with flying colors

April 25, 2017

Like a chameleon changing colors to blend into the environment, Lawrence Livermore researchers have created a technique to change the color of assembled nanoparticles with an electrical stimulant.

Nano-notch sends self-assembling polymers into a spiral

April 25, 2017

A simple circular or hexagonal pit written into silicon can be used to generate self-assembling polymer spirals thanks to the addition of a tiny notch in the template, report scientists in the launch issue of Nano Futures.

Graphene holds up under high pressure

April 24, 2017

A single sheet of graphene, comprising an atom-thin lattice of carbon, may seem rather fragile. But engineers at MIT have found that the ultrathin material is exceptionally sturdy, remaining intact under applied pressures ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.