Long-distance communication, microbial style

October 6, 2010
Shewanella oneidensis produced rosettes of iron(II) phosphate in the simulated soil. The bacteria produced these structures without directly contacting the iron oxides.

Scientists knew that the microbe Shewanella oneidensis transformed the electronic structure of the iron oxide it touched in the ground as well as without direct contact. Scientists from Pacific Northwest National Laboratory have now developed a model system that allows the study of this indirect transformation. They also discovered previously unseen iron(II) phosphate rosettes precipitated during bioreduction process. These blooms grew on the surface and within the grains of sand and were intensely colonized by the microbes.

This research provides a greater understanding of redox transformations of iron(III) hydroxides, which influence the fate of pollutants and nutrients in certain soils, sediments, and subsurface materials. "These findings were both fascinating and unexpected," said Dr. Tanya Peretyazhko, who led the PNNL team.

To do this study, the team devised a new that mimics the real world where iron oxides are commonly embedded in microscopic pores between grains of sand and other matter or in microfractures in the subsurface. The team simulated intragrain pores and microfractures by mixing a solution of with highly porous silica grains. They tested the grains to verify that when in contact with water, the iron oxides would remain embedded within the pores.

Then, the S. oneidensis was introduced. Bioreduction was encouraged in oxygen-free conditions and with the introduction of chemicals, such as phosphate. With ideal conditions established, the team developed techniques to preserve the samples for x-ray diffraction and scanning and , which were performed in EMSL, a Department of Energy national scientific user facility at PNNL. This analysis answered questions about shape and of iron precipitates and the proximity of the microbes.

With the simulation technique established, the team studied the mechanism that microbes use to transform iron oxides without direct contact, as well as mechanisms of precipitate formation.

The researchers are now looking to understand how the microbes accomplish their long-distance electron transfer. Some researchers suggest "electron shuttles," in which microbes release molecules that carry electrons to the iron oxides. Others posit that organic molecules are released to the iron oxides and dissolve them without reduction.

Explore further: Particle size matters to bacteria ability to immobilize heavy metals

More information: Peretyazhko TS, JM Zachara, DW Kennedy, JK Fredrickson, BW Arey, JP McKinley, CM Wang, AC Dohnalkova, and Y Xia. 2010. "Ferrous phosphate surface precipitates resulting from the reduction of intragrain 6-line ferrihydrite by Shewanella oneidensis MR-1." Geochimica et Cosmochimica Acta 74(12):3751-3767.

Related Stories

Progress Toward a Biological Fuel Cell?

December 30, 2008

(PhysOrg.com) -- Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) ...

Recommended for you

Team refines filters for greener natural gas

March 23, 2017

Natural gas producers want to draw all the methane they can from a well while sequestering as much carbon dioxide as possible, and could use filters that optimize either carbon capture or methane flow. No single filter will ...

Chemists ID catalytic 'key' for converting CO2 to methanol

March 23, 2017

Capturing carbon dioxide (CO2) and converting it to useful chemicals such as methanol could reduce both pollution and our dependence on petroleum products. So scientists are intensely interested in the catalysts that facilitate ...

Argon is not the 'dope' for metallic hydrogen

March 23, 2017

Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter. And yet there are still many hydrogen secrets to unlock, including how best to ...

Microbes could make drug production more efficient

March 23, 2017

Alkaloid-based pharmaceuticals derived from plants can be potent treatments for a variety of illnesses. But getting these powerful therapeutic agents from plants can take a long time and cost plenty of money, because it often ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.