

Faster websites, more reliable data

October 14 2010, Larry Hardesty, MIT News

Today, visiting almost any major website -- checking your Facebook
news feed, looking for books on Amazon, bidding for merchandise on
eBay -- involves querying a database. But the databases that these sites
maintain are enormous, and searching them anew every time a new user
logs on would be painfully time consuming. To serve up data in a timely
fashion, most big sites use a technique called caching. Their servers keep
local copies of their most frequently accessed data, which they can send
to users without searching the database.

But caching has an obvious problem: If any of the data in the database
changes, the cached copies have to change too; moreover, any cached
data that are in any way dependent on the changed data also have to
change. Tracking such data dependencies is a nightmare for
programmers, but even when they do their jobs well, problems can arise.

1/5

https://phys.org/tags/database/

For instance, says Dan Ports, a graduate student in the Computer Science
and Artificial Intelligence Lab, suppose that someone is bidding on an
item on eBay. The names of the bidders could be cached in one place,
the value of their bids in another. Making a new bid updates the
database, but as that update propagates through the network of servers, it
could reach the value cache before it reaches the name cache. The
bidder would see someone else’s name next to her bid and think she’d
been beaten to the punch. “They might see their own bid attributed to
somebody else,” Ports says, “and wind up in a bidding war with
themselves.”

MIT researchers have developed a new caching system that eliminates
this type of asymmetric data retrieval while also making database caches
much easier to program. Led by Ports and his thesis advisor, Institute
Professor Barbara Liskov, who won the 2008 Turing Award, the highest
award in computer science, the research also involves associate professor
Sam Madden, PhD student Austin Clements, and former master’s student
Irene Zhang. Ports presented the system on Oct. 5 at the USENIX
Symposium on Operating Systems Design and Implementation in
Vancouver.

Transact locally

Unlike existing database caching systems, Ports and Liskov’s can handle
what computer scientists call transactions. A transaction is a set of
computations that are treated as a block: None of them will be
performed unless all of them are performed. “Suppose that you’re
making a plane reservation, and it has two legs,” says Liskov. “You’re
not interested in getting one of them and not the other. If you run this as
a transaction, then the underlying system will guarantee that you get
either both of them or neither of them. And it does this regardless of
whether there are other concurrent accesses, or other users are trying to
get seats on those flights, or there are machine failures, and so forth.

2/5

https://phys.org/tags/computer+science/
https://phys.org/tags/ebay/
https://phys.org/tags/servers/
http://drkp.net/drkp/papers/txcache-osdi10.pdf

Transactions are a well-understood technique in computer science to
achieve this kind of functionality.” Indeed, it’s the idea of transactions
that gives the new system its name: TxCache, where “Tx” is a shorthand
for “transaction.”

TxCache also makes it easier for programmers to manage caches.
“Existing caches have the approach that they just make this cache and
tell the programmer, ‘Here’s a cache: You can put stuff in it if you want;
you can get stuff out of it if you want,’” says Ports. “But figuring out
how to do that is entirely up to you.” TxCache, however, recognizes that
a computer program already implicitly defines the relationships between
stored data. For instance, a line of code might say that Z = X + Y, which
is an instruction to look up X, look up Y, and store their sum as Z. With
TxCache, the programmer would simply specify that that line of code —
Z = X + Y — should be cached, and the system would automatically
ensure that, whenever any one of those variables changed, the cached
copies of the other two would be updated, everywhere. And, of course, it
can perform the same type of maintenance with more complicated data
dependencies, represented by more complicated functions.

Bean counting

According to Liskov, the key to getting TxCache to work was “a lot of
bookkeeping.” The system has to track what data are cached where, and
which data depend on each other. Indeed, Liskov says, it was the fear
that that bookkeeping would chew up too many computing cycles that
dissuaded the designers of existing caching systems from supporting
transactions. But, she explains, updating the caches is necessary only
when data in the database change. Modifying the data is a labor-intensive
operation; the bookkeeping steps are comparatively simple. “Yes, we are
doing more work, but proportionally it’s very small,” Liskov says. “It’s on
the order of 5 to 7 percent.” In the researchers’ experiments, websites
were more than five times as fast when running TxCache as they were

3/5

without it.

“The trouble with large-scale services like Bing and Amazon and Google
and the like is that they operate at such a high level of scalability,” says
Solom Heddaya, a partner at Microsoft and infrastructure architect for
Bing, Microsoft’s search engine. “On a single request from the user
searching for something, there are many, many applications that get
invoked in real time, and they together will use tens of thousands of
servers.” On that scale, Heddaya says, some kind of caching system is
necessary. But, he says, “until this paper came along, people building
these systems said, ‘Hey, we will shift the burden to the programmer of
the application. We will give you the convenience of caching, so that we
bring the data closer to where the computation is, but we will make you
worry about whether the cache has the right data.”

Heddaya cautions that, unlike some other caching systems, the MIT
researchers’ offers significant performance improvements only for sites
where reading operations — looking up data in the database — greatly
outnumber writing operations — updating data in the databases. But
according to Ports, “Adding support for using caching during read/write
transactions is one of the things we're thinking about now. There aren't
any major technical obstacles to doing so: It's mainly a question of how
we can do so without introducing unexpected effects that make life more
difficult for users and programmers.”

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

4/5

https://phys.org/tags/programmers/
http://web.mit.edu/newsoffice/

Citation: Faster websites, more reliable data (2010, October 14) retrieved 19 April 2024 from
https://phys.org/news/2010-10-faster-websites-reliable.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://phys.org/news/2010-10-faster-websites-reliable.html
http://www.tcpdf.org

