Making better biosensors with electron density waves

October 22, 2010

An emerging field with the tongue-twisting name of "optofluidic plasmonics" promises a new way to detect and analyze biological molecules for drug discovery, medical diagnostics, and the detection of biochemical weapons. Investigators at the University of California, San Diego led by Yeshaiahu Fainman have succeeded in merging a microfluidics system with plasmonics -- sometimes called "light on a wire" -- onto a single platform. Plasmonics is based on electron waves on a metal surface excited by incoming light waves.

According to Fainman, tapping the potential of plasmonics for biomolecule detection systems has been a challenge, because localized optical field scales are usually much larger than the molecules in question. In order to make a useful optical biosensor, he says, "We need to increase the interaction cross-section by finding ways to localize optical interrogation fields ideally to the scales comparable to those of biomolecules." Since that is not currently possible, he and his team used an approach of integrating microfluidics and plasmonics on single chips, allowing fluid to ferry the molecules into the cross-section of the optical field.

Fainman expects the system to be particularly useful in studying large arrays of protein-protein interactions for identifying potential drugs that bind to specific target molecules, which may lead to earlier cancer diagnoses and faster discovery of new drugs. Unlike most current methods, does not require labeling of molecules with fluorescent or radioactive entities -- labels often hinder interaction by covering up or blocking binding surfaces.

The new platform also carries the advantage of being high throughput and multiplexed, offering researchers an opportunity to examine thousands of arrayed compounds simultaneously, which, he says, "biologists and physicians get very excited about."

Fainman will present these results at Frontiers in Optics (FiO) 2010/Laser Science XXVI -- the 94th annual meeting of the Optical Society (OSA).

Explore further: Breakthrough in nano-optics: Researchers develop plasmonic amplifier

More information: The presentation, "Optofluidic Nano-Plasmonics for Biochemical Sensing" is at 4 p.m. on Tuesday, Oct. 26.

Related Stories

Molecular machines drive plasmonic nanoswitches

February 11, 2009

Plasmonics -- a possible replacement for current computing approaches -- may pave the way for the next generation of computers that operate faster and store more information than electronically-based systems and are smaller ...

Direct laser cooling of molecules

October 21, 2010

Cooling molecules with lasers is harder than cooling individual atoms with lasers. The very process of laser cooling, in which atoms are buffeted by thousands of photons, was thought by many to be impossible for molecules ...

Going plasmonic in search of faster computing, communications

October 16, 2009

(PhysOrg.com) -- A team of European researchers has demonstrated some of the first commercially viable plasmonic devices, paving the way for a new era of high-speed communications and computing in which electronic and optical ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.