Landing site for Rosetta going South

September 27, 2010, European Planetary Science Congress
Image showing the orbit of comet Churyumov-Gerasimenko and Rosetta during the encounter (not to scale). Credit: ESA

Scientists have determined that ESA's Rosetta mission needs to deliver its lander to a site in the southern hemisphere of comet 67P/Churyumov-Gerasimenko. A site in this region will be the safest and most scientifically interesting according to the recent study.

ESA’s Rosetta mission needs to deliver its lander, Philae, to a site in the southern hemisphere of 67P/Churyumov-Gerasimenko, according to a new study of the comet’s nucleus.

“Southern sites appear to be both the safest and the most scientifically interesting,” said Jeremie Lasue, who presented the findings at the European Congress in Rome on Thursday 23rd September.

“Churyumov-Gerasimenko is a time capsule holding material from the birth of the Solar System. The nucleus’s southern hemisphere has been heavily eroded, so Philae will not have to drill down far to find those pristine samples. At the time of Rosetta’s rendezvous, gas will be escaping mainly from the , so it will be safer for Philae to touch down in the south. In addition due to the orientation of the comet, the southern hemisphere will be protected from extreme temperature variations at the time of delivery,” said Lasue.

After a ten-year chase, Rosetta is due to begin maneuvers to rendezvous with comet Churyumov-Gerasimenko in May 2014 and go into orbit around the nucleus in August. Philae is scheduled to drop down onto the surface of the nucleus in November. The orbiter and lander will then monitor the comet’s evolution over the next 13 months as it approaches the Sun and then travels away again.

Lasue and colleagues from the INAF-IASF and IFSI institutes in Rome have developed three-dimensional computer models that predict the activity of Churyumov-Gerasimenko’s nucleus from the first few months of Rosetta’s initial encounter until the comet’s closest approach in August 2015. Comet nuclei are a porous mixture of dust, ice and frozen gases such as carbon dioxide and carbon monoxide. As the nucleus approaches the Sun and starts to heat up, the gases vaporize and the tail, or coma, starts to form.

The models predict how heat is transferred through the layered nucleus and the vaporization rates of the ices as the comet approaches the Sun. Churyumov-Gerasimenko’s lumpy, diamond-shaped nucleus is tilted at an angle of 45 degrees, which means that the south pole is in the full glare of the Sun at the closest approach. The simulations show that after several orbits close to the Sun, the south pole has been significantly more eroded than the north, potentially giving Philae easy access to pristine cometary material just below the surface. Philae will be able to drill down up to 30 centimeters to collect samples of the cometary soil for on-board analysis.

(Click 'Enlarge' for animation) Surface illumination of the nucleus of comet Churyumov-Gerasimenko at the time of Rosetta’s rendezvous with the comet at approximately 3.5 AU from the Sun (1 AU = 149.6 million kilometers). The comet nucleus’s rotational period is approximately 12 hours. Credit: Lasue/INAF

The south also looks to offer the most stable landing conditions. At the time of landing, the northern hemisphere is illuminated and activity due to escaping gas is concentrated there, with up to 30 kg of gas and 50 kg of dust emitted per second. Gas escaping from the comet’s interior drags dust grains up to the surfaces. Small dust particles are carried away into the coma, while larger grains build up on the surface, forming a coating known as a dust mantle. The simulations show that a dust mantle approximately 20 centimeters deep will have formed in the southern hemisphere, compared to a coating of just a couple of centimeters in northern regions.

“When Philae lands, temperatures at the equator may rise above freezing and could fluctuate by around 150 degrees Celsius. However, the regions close to the south pole will keep more stable temperatures. From our present results, we’ve concluded that the southern hemisphere promises the best landing sites. As more data on Churyumov-Gerasimenko becomes available to better quantify our results, we will be able to add to the picture and help prepare for a safe landing for Philae,” said Maria Cristina De Sanctis, co-author of the study.

Another reason for choosing a landing site is that Philae is powered by solar cells, so will experience higher levels of illumination as the comet approaches the Sun.

By studying materials from the comet, Philae will help astrobiologists understand if comet impacts on the early Earth could have delivered molecules essential for the origin of life on our planet. Comets can also provide information about the history and evolution of the Solar System - shedding light on how systems that are capable of supporting habitable worlds form.

Explore further: Boosting the accuracy of Rosetta's Earth approach

Related Stories

Boosting the accuracy of Rosetta's Earth approach

October 19, 2007

Yesterday, 18 October at 18:06 CEST, the thrusters of ESA’s comet chaser, Rosetta, were fired in a planned, 42-second trajectory correction manoeuvre designed to 'fine tune' the spacecraft's approach to Earth. Rosetta is ...

Stunning view of Rosetta skimming past Mars

February 26, 2007

This stunning view, showing portions of the Rosetta spacecraft with Mars in the background, was taken by the Rosetta Lander Imaging System (CIVA) on board Rosetta’s Philae lander just four minutes before the spacecraft ...

Where comets emit dust

April 26, 2010

Studying comets can be quite dangerous - especially from close up. Because the tiny particles of dust emitted into space from the so-called active regions on a comet's surface can damage space probes.

ESA's Rosetta comet-chaser goes LEGO

September 22, 2010

( -- What does a scientist do to visualise a space journey? Build a model, of course. A model of Europe's Rosetta comet-chaser made out of LEGO blocks started out in this small way and has grown into a high-fidelity ...

Rosetta's final Earth boost

November 4, 2009

ESA's comet chaser Rosetta will swing by Earth for the last time on 13 November to pick up energy and begin the final leg of its 10-year journey to comet 67P/Churyumov-Gerasimenko. ESA's European Space Operations Centre will ...

UK scientists set to glimpse Rosetta as it swings by Earth

March 3, 2005

One year into its twelve year journey to Comet 67P/Churyumov-Gerasimenko, the European Space Agency’s (ESA) Rosetta mission will make a “close” flyby of Earth on Friday 4th March. UK scientists involved in the mission ...

Recommended for you

How massive can neutron stars be?

January 16, 2018

Astrophysicists at Goethe University Frankfurt set a new limit for the maximum mass of neutron stars: They cannot exceed 2.16 solar masses.

Black hole spin cranks-up radio volume

January 12, 2018

Statistical analysis of supermassive black holes suggests that the spin of the black hole may play a role in the generation of powerful high-speed jets blasting radio waves and other radiation across the universe.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.