Magnetism's subatomic roots: Study of high-tech materials helps explain everyday phenomenon

September 3, 2010, Rice University

(PhysOrg.com) -- The modern world -- with its ubiquitous electronic devices and electrical power -- can trace its lineage directly to the discovery, less than two centuries ago, of the link between electricity and magnetism. But while engineers have harnessed electromagnetic forces on a global scale, physicists still struggle to describe the dance between electrons that creates magnetic fields.

Two theoretical physicists from Rice University are reporting initial success in that area in a new paper in the Proceedings of the National Academy of Science. Their new conceptual model, which was created to learn more about the quantum quirks of high-temperature superconductors and other high-tech , has also proven useful in describing the origins of ferromagnetism -- the everyday "magnetism" of compass needles and refrigerator magnets.

"As a theorist, you strive to have exact solutions, and even though our new model is purely theoretical, it does produce results that match what's observed in the real world," said Rice physicist Qimiao Si, the lead author of the paper. "In that sense, it is reassuring to have designed a in which ferromagnetism is allowed."

Ferromagnets are what most people think of as magnets. They're the permanently materials that keep notes stuck to refrigerators the world over. Scientists have long understood the large-scale workings of ferromagnets, which can be described theoretically from a coarse-grained perspective. But at a deeper, fine-grained level -- down at the scale of atoms and electrons -- the origins of ferromagnetism remain fuzzy.

"When we started on this project, we were aware of the surprising lack of theoretical progress that had been made on metallic ferromagnetism," Si said. "Even a seemingly simple question, like why an everyday refrigerator magnet forms out of electrons that interact with each other, has no rigorous answer."

Si and graduate student Seiji Yamamoto's interest in the foundations of ferromagnetism stemmed from the study of materials that were far from ordinary.

Si's specialty is an area of condensed matter physics that grew out of the discovery more than 20 years ago of high-temperature superconductivity. In 2001, Si offered a new theory to explain the behavior of the class of materials that includes high-temperature superconductors. This class of materials -- known as "quantum correlated matter" -- also includes more than 10 known types of ferromagnetic composites.

Si's 2001 theory and his subsequent work have aimed to explain the experimentally observed behavior of quantum-correlated materials based upon the strangely correlated interplay between electrons that goes on inside them. In particular, he focuses on the correlated electron effect that occur as the materials approach a "quantum critical point," a tipping point that's the quantum equivalent of the abrupt solid-to-liquid change that occurs when ice melts.

The quantum critical point that plays a key role in high-temperature superconductivity is the tipping point that marks a shift to antiferromagnetism, a magnetic state that has markedly different subatomic characteristics from ferromagnetism. Because of the key role in high-temperature superconductivity, most studies in the field have focused on antiferromagnetism. In contrast, ferromagnetism -- the more familiar, everyday form of magnetism -- has received much less attention theoretically in quantum-correlated materials.

"So our initial theoretical question was, 'What would happen, in terms of correlated electron effects, when a ferromagnetic material moves through one of these quantum tipping points?" said Yamamoto, who is now a postdoctoral researcher at the National High Magnetic Field Laboratory in Tallahassee, Fla..

To carry out this thought experiment, Si and Yamamoto created a model system that idealizes what exists in nature. Their jumping off point was a well-studied phenomenon known as the Kondo effect -- which also has its roots in quantum effects. Based on what they knew of this effect, they created a model of a "Kondo lattice," a fine-grained mesh of electrons that behaved like those that had been observed in Kondo studies of real-world materials.

Si and Yamamoto were able to use the model to provide a rigorous answer about the fine-grained origins of metallic ferromagnetism. Furthermore, the ferromagnetic state that was predicted by the model turned out to have quantum properties that closely resemble those observed experimentally in heavy fermion ferromagnets.

"The model is useful because it allows us to predict how real-world materials might behave under a specific set of circumstances," Yamamoto said. "And, in fact, we have been able to use it to explain experimental observations on heavy fermion metals, including both the antiferromagnets as well as the less well understood ferromagnetic materials."

Explore further: Physicists offer new theory for iron compounds

Related Stories

Physicists offer new theory for iron compounds

March 12, 2009

An international team of physicists from the United States and China this week offered a new theory to both explain and predict the complex quantum behavior of a new class of high-temperature superconductors.

Quantum fluctuations are key in superconductors

January 8, 2010

(PhysOrg.com) -- New experiments on a recently discovered class of iron-based superconductors suggest that the ability of their electrons to conduct electricity without resistance is directly connected with the magnetic properties ...

Quantum fractals at the border of magnetism

July 29, 2010

U.S., German and Austrian physicists studying the perplexing class of materials that includes high-temperature superconductors are reporting this week the unexpected discovery of a simple "scaling" behavior in the electronic ...

Recommended for you

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...

Investigating the motility of swimming Euglena

March 8, 2019

Some species of Euglenids, a diversified family of aquatic unicellular organisms, can perform large-amplitude, elegantly coordinated body deformations. Although this behavior has been known for centuries, its function is ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

El_Nose
not rated yet Sep 03, 2010
I wonder why with the truely marvelous ways we can now construct matter and influence it down to controlling an atoms spin and even popping off an electron froma valence shell with femto second busrts of radiation -- why can't we try to create meta-material magnets

Try to take a normally non magnetic - metallic substance and make it magnetic -- or heck try it on one of the inert gases, a magnetic cloud would be interesting
Drew_L
Sep 03, 2010
This comment has been removed by a moderator.
genastropsychicallst
1 / 5 (4) Sep 04, 2010
… ever is uneven any electricing but never was not even one electricst unever, bey quadrate. Mean, all electrics are always without theory because with practum is also not the real electric …
omatumr
1 / 5 (3) Sep 04, 2010
I wonder why . . .


Neutrons and neutron stars have magnetic fields?

Neutron repulsion causes cosmic explosions, and

Neutron repulsion powers the Sun.

With kind regards,
Oliver K. Manuel
GrowlingDragon27
not rated yet Sep 05, 2010
Say wha?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.