Elpida develops industry's smallest 30nm process 2-Gigabit DDR3 SDRAM

September 29, 2010

Elpida Memory, Inc., Japan's global supplier of Dynamic Random Access Memory (DRAM), today announced that it had completed development of a 30nm process 2-gigabit DDR3 SDRAM.

The new 2-gigabit DDR3 SDRAM used 30nm-level advanced process migration technology to create the DRAM industry's smallest-level 2-gigabit DDR3 SDRAM. It achieves 45% more chips per wafer compared with Elpida's 40nm process products. Also, the new process design developed by Elpida will help contain rising chip costs associated with process migration. As a result, the 2-gigabit DDR3 is slated to become an extremely cost-competitive product.

Elpida's new chip meets the JEDEC specs for the high-speed DDR3-1866 and 1.35V low-voltage, high-speed DDR3L-1600 , both expected to become mainstream industry products in 2011. Also, the 30nm DDR3 SDRAM is eco-friendly. As a DDR3 SDRAM it achieves one of the industry's lowest levels of electric current usage (approximately 15% less operating and approximately 10% less standby usage compared with Elpida's 40nm products), which contributes to lower PC and digital consumer electronics .

Elpida plans to begin sample shipments of the newly developed DDR3 SDRAM in December 2010. Volume production is expected to commence in the same month.

Elpida will apply the new 30nm process technology to its Mobile RAM products. The company also plans to use the process together with Through Silicon Via (TSV) technology to support one-chip memory solutions for mobile phones, digital still cameras and PC DRAMs.

Explore further: Elpida Begins Mass Production of 40nm 2-Gigabit DDR3 SDRAM

Related Stories

Elpida Begins Mass Production of 40nm 2-Gigabit DDR3 SDRAM

December 22, 2009

Elpida Memory, Japan's leading global supplier of Dynamic Random Access Memory (DRAM), today announced that its Hiroshima Plant has begun volume production of 40nm process 2-gigabit DDR3 SDRAMs. Since completing development ...

Elpida Completes Development of 50nm Process DDR3 SDRAM

November 26, 2008

Elpida Memory, Japan's leading global supplier of Dynamic Random Access Memory (DRAM), today announced that it has completed development of a 50nm process DDR3 SDRAM. The new DRAM product features the lowest power consumption ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
5 / 5 (2) Sep 29, 2010
What gives?

Based on simple geometry, they should have been able to fit about 77.77% more chips per wafer...

Is the 32.72% discrepancy represented entirely by circuitry for buses and power supply of the chips?

It would seem that the transistors are miniaturizing faster than the wiring, and that moreover, the law of large numbers is at play because the wires and other "logic" and power is taking up a higher and higher percentage of the chip's area and volume as compared to individual transistors.
plasma_guy
5 / 5 (1) Oct 10, 2010
What gives?

Based on simple geometry, they should have been able to fit about 77.77% more chips per wafer...

Is the 32.72% discrepancy represented entirely by circuitry for buses and power supply of the chips?

It would seem that the transistors are miniaturizing faster than the wiring, and that moreover, the law of large numbers is at play because the wires and other "logic" and power is taking up a higher and higher percentage of the chip's area and volume as compared to individual transistors.


I think that is a good point and also the scaling may not be exactly 40 nm to 30 nm but 40-something to 30-something. It is interesting they can do something this aggressive. Maybe they are trying to match Samsung's pace.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.