Cities attract hurricanes

August 23, 2010 By Mike Lucibella, Inside Science News Service
Hurricane Katrina in the Gulf of Mexico. Credit: GOES 12 Satellite, NASA, NOAA

Five years ago, Hurricane Katrina slammed into the Gulf Coast, devastating New Orleans and other regions along the Mississippi River Delta. Hurricane forecasting has steadily progressed over the intervening years, which should help cities and states better prepare for devastating cyclones. Now researchers have added another piece to the forecasting puzzle by determining how the texture of landscapes can affect a storm’s motion.

New research shows that rough areas of land, including city buildings and naturally jagged land cover like trees and forests can actually attract passing hurricanes. The research found also that storms traveling over river deltas hold together longer than those over dry ground. As a result, the city of New Orleans might feel a greater impact of hurricanes coming off the than existing computer models predict.

A team from the University of Hong Kong modeled the effects that different terrain has on the paths of tropical storms to determine how cities that lie in the path of a change a storm's motion.

"Cities impose greater friction on the swirling flow because of the tall buildings," said Johnny Chan, a professor of meteorology at the university. "Our results show that tropical cyclones tend to be 'attracted' towards areas of higher friction. So it is possible that cities could cause to veer towards them."

Rough cityscapes and forests trap air. This compresses the air and forces it up into the atmosphere, adding energy to the storm and pulling the center of the hurricane toward the rough region. As a result, a city can cause a hurricane to swerve from its predicted path by as much as 20 miles.

The change is comparatively small for hurricanes that can reach widths of hundreds of miles, but according to Chan, “The main implication from this study is that in any computer prediction of the track of a hurricane, the representation of the land surface is important.”

The researchers also found that river deltas contribute to the longevity of hurricanes. There is more heat-carrying moisture available to evaporate from the wet deltas than dry ground, prolonging the life of the storm.

Chan and Au-Yeung Yee Man developed a to track the movements of a simulated hurricane across varying terrain. Meteorologists have previously incorporated changes in moisture between the sea and land into models, as well as some differences in land formations; however the refinements that Chan and Au-Yeung have developed help reduce the uncertainly in existing models, which improves the planning vital to reducing the losses that accompany Katrina-size storms and the repercussions that follow.

"Its direct applicability to real predictions may be a little bit limited, but I do applaud the idea of looking at the idea of moisture availability and surface roughness," said Bob Tuleya, a retired researcher at the Global Fluid Dynamics Laboratory at the National Oceanographic and Atmospheric Administration who looked at the research, which is slated to be published in the Journal of Geophysical Research.

Chan said the team will continue to refine their models in order to minimize the error before their research can be fully implemented in hurricane predictions. This includes factoring in the effects of the Earth's rotation and other land features such as mountains and jagged coastlines. In addition, the researchers are planning to check their models by looking at the historical records of hurricane paths for any sign of the direction changes that cities would have caused.

Explore further: Tropical storms can quickly turn deadly

Related Stories

Researchers make hurricane predictions more accurate

May 24, 2006

The hurricane forecasting model developed by University of Rhode Island and NOAA scientists – the most accurate model used by the National Hurricane Center over the last three years – has been improved for the 2006 hurricane ...

Busy Atlantic storm season predicted

August 2, 2005

U.S. storm forecasters say they expect 11 to 14 tropical storms with most developing into hurricanes over the remainder of the 2005 Atlantic storm season.

East Coast most likely hurricane target

May 16, 2006

Private forecasts say the East Coast is the most likely target of five to nine hurricanes expected to hit the United States this season, reports said.

Recommended for you

Oceans of garbage prompt war on plastics

December 15, 2018

Faced with images of turtles smothered by plastic bags, beaches carpeted with garbage and islands of trash floating in the oceans, environmentalists say the world is waking up to the need to tackle plastic pollution at the ...

A damming trend

December 14, 2018

Hundreds of dams are being proposed for Mekong River basin in Southeast Asia. The negative social and environmental consequences—affecting everything from food security to the environment—greatly outweigh the positive ...

Data from Kilauea suggests the eruption was unprecedented

December 14, 2018

A very large team of researchers from multiple institutions in the U.S. has concluded that the Kilauea volcanic eruption that occurred over this past summer represented an unprecedented volcanic event. In their paper published ...

The long dry: global water supplies are shrinking

December 13, 2018

A global study has found a paradox: our water supplies are shrinking at the same time as climate change is generating more intense rain. And the culprit is the drying of soils, say researchers, pointing to a world where drought-like ...

Death near the shoreline, not life on land

December 13, 2018

Our understanding of when the very first animals started living on land is helped by identifying trace fossils—the tracks and trails left by ancient animals—in sedimentary rocks that were deposited on the continents.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 24, 2010
"Sure would be great if they fixed those levees."

(inscription for the head stone of a man whose window presently overlooks the Mississippi Delta)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.