Caltech biologists discover how T cells make a commitment

July 2, 2010, California Institute of Technology

Caltech biologists discover how T cells make a commitment
Scanning electron micrograph of a T cell. [Credit: Courtesy of the National Cancer Institute]
(PhysOrg.com) -- When does a cell decide its particular identity? According to biologists at the California Institute of Technology (Caltech), in the case of T cells—immune system cells that help destroy invading pathogens—the answer is when the cells begin expressing a particular gene called Bcl11b.

The activation of Bcl11b is a "clean, nearly perfect indicator of when cells have decided to go on the T-cell pathway," says Ellen Rothenberg, the Albert Billings Ruddock Professor of Biology at Caltech and senior author of a paper about the discovery that appears in the July 2 issue of the journal Science. The paper, coauthored by Caltech postdoctoral scholar Long Li, is one of three in the issue to examine this powerful gene.

The Bcl11b gene produces what is known as a transcription factor—a protein that controls the activity of other . Specifically, the gene is a repressor, which means it shuts off other genes. This is crucial for T cells, because T cells are derived from multipotent hematopoietic stem cells—stem cells that express a wide variety of genes and have the capacity to differentiate into a host of other blood cell types, including the various cells of the immune system.

"Stem cells and their multipotent descendents follow one set of growth rules, and T cells another," says Rothenberg, "so if T-cell precursors don't give up certain stem-cell functions, bad things happen." Like , T cells have a remarkable ability to grow—but as part of their T-cell-ness, she says, they do so "under incredibly strict regulation. Their growth is restricted unless certain conditions are met." The cells need to shift their growth-control rules during development; after development, because they still need to grow, the cells and their daughters need an active mechanism to make the change irreversible. Bcl11b is a long-sought part of that mechanism.

"For cells that never divide again, maintaining identity is trivial. What they are at that moment is what they are forever," Rothenberg says. Once T cells mature, their abilities to keep dividing and migrating around the body also give them the opportunity to have their daughters adopt different roles in the immune system as they encounter and interact with other types of cells. "Even so, their central T-cell nature remains unchanged, which means that they must have a strong sense of identity," she adds.

The conversion from T-cell precursors to actual T cells takes place in the thymus, a specialized organ located near the heart. "When the future T cells move into the thymus," Rothenberg explains, "they are expressing a variety of genes that give them the option to become other cells," such as mast cells (which are involved in allergic reactions), killer cells (which kill cells infected by viruses), and antigen-presenting cells (which help T cells recognize targeted foreign cells).

As they enter the thymus, the organ sends molecular signals to the cells, directing them down the T-cell pathway. At this point, the Rothenberg lab found, the Bcl11b gene gets turned on. Li, the lead author on the Science paper, found that this confirms the T cells' identity by blocking other pathways. The Bcl11b protein is also needed for the cells to make the break from their stem-cell heritage. "It is like a switch that allows the cells to shut off stem-cell genes and other regulatory genes," Rothenberg says. "It keeps them clean—and may be necessary to 'guard' the T cell from becoming some other type of cell."

Although it is thought that many genes are involved in the process of creating and maintaining T cells, "Bcl11b is the only regulatory gene in the whole genome to be turned on at this stage," she adds, "and it is probably always active in all T cells. It is the most T-cell specific of all of the regulatory factors discovered so far." Among , this gene is only expressed in T cells, she says. "The gene is used in other cells in completely different types of tissue, such as brain and skin and mammary tissue, but that's how the body works. There's no confusion, because something like brain tissue and mammary tissue will never be a T cell."

When Bcl11b is not present—as in mice genetically altered to lack the gene—T cells "don't turn out right," Rothenberg says. Indeed, in individuals with T-cell leukemia have been found to lack the gene. "It may make them more susceptible to the effects of radiation, because the cells don't know when to stop growing," she says. "We think that the loss of one of the two copies of the gene is enough to prevent cells from growing appropriately."

Explore further: New research sheds light on how stem cells turn into blood cells

Related Stories

The making of an intestinal stem cell

March 5, 2009

Researchers have found the factor that makes the difference between a stem cell in the intestine and any other cell. The discovery reported in the March 6th issue of the journal Cell, a Cell Press publication, is an essential ...

'Scrawny' gene keeps stem cells healthy

January 7, 2009

(PhysOrg.com) -- Stem cells are the body's primal cells, retaining the youthful ability to develop into more specialized types of cells over many cycles of cell division. How do they do it? Scientists at the Carnegie Institution ...

Recommended for you

Researchers engineer a tougher fiber

February 22, 2019

North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging ...

A quantum magnet with a topological twist

February 22, 2019

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.