For the first time, researchers observe graphene sheets becoming buckyballs (w/ Video)

June 11, 2010 By Lisa Zyga feature
These images from a transmission electron microscope show the formation of fullerene from graphene. In (a), the edges of the graphene sheet continuously change shape when exposed to the e-beam. (b) shows the final product, while (c)-(h) show close-ups of the sequence of a graphene flake transforming into a fullerene. Image credit: Andrey Chuvilin, et al.

( -- Peering through a transmission electron microscope (TEM), researchers from Germany, Spain, and the UK have observed graphene sheets transforming into spherical fullerenes, better known as buckyballs, for the first time. The experiment could shed light on the process of how fullerenes are formed, which has so far remained mysterious on the atomic scale.

“This is the first time that anyone has directly observed the mechanism of fullerene formation,” Andrei Khlobystov of the University of Nottingham told “Shortly after the discovery of fullerene (exactly 25 years ago), the ‘top down’ mechanism of fullerene assembly was proposed. However, it was soon rejected in favor of a multitude of different ‘bottom up’ mechanisms, mainly because people could not understand how a flake of could form a fullerene and because they did not have means to observe the fullerene formation in situ.”

As the scientists report in a recent study published in Nature Chemistry, there are four main steps involved in this top-down fullerene formation process, which can be explained by quantum chemical modeling. The critical first step is the loss of at the edge of the graphene sheet. Because the carbon atoms at the edge of graphene are connected by only two bonds to the rest of the structure, the researchers could use the microscope’s high-energy (or “e-beam”) to chip the atoms away, one by one. While exposed to the e-beam, the edges of the graphene sheet appear to be continuously changing shape.

The loss of carbon atoms on the edge of the graphene is the most crucial step in the process, the scientists explain, since it destabilizes the structure and triggers the subsequent three steps. The increase in the number of dangling carbon bonds at the edge of the graphene causes the formation of pentagons on the graphene edge, which is followed by the curving of the graphene into a bowl-like shape. Both of these processes are thermodynamically favorable, since they bring carbon atoms on the edge closer to one another, allowing them to form bonds with each other.

The video will load shortly.
This video shows the transformation of a graphene sheet into a fullerene (forming in the top center of the images). Video credit: Andrey Chuvilin, et al.

In the fourth and final step, the carbon bonds cause the curved graphene to “zip up” its open edges and form a cage-like buckyball. Because the zipping process reduces the number of dangling bonds, the spherical fullerene represents the most stable configuration of carbon atoms under these conditions. Once the edges are completely sealed, no further carbon atoms can be lost, and the newly created fullerene remains intact under the e-beam.

Although spherical can already be generated in high yields from graphite (which is made of many graphene sheets stacked together), up until now scientists have not fully understood the underlying mechanisms of their formation. By observing the process in real time in this study, the researchers have been able to identify the structural changes that the graphene undergoes in order to become increasingly round and form a perfect fullerene. The results help to unravel the mystery of fullerene formation by explaining, for instance, how laser ablation works as a fullerene production method: the microscope’s e-beam, similar to a laser beam, supplies the energy to break the carbon bonds and serve as the critical initial step in the formation process.

“The key to the direct visualization of fullerene formation is (i) atomically thin graphene flakes mounted perpendicular to the electron beam; (ii) aberration corrected high resolution TEM allowing imaging with atomic resolution; and (iii) careful analysis of the evolution of graphene to fullerene, image simulation and correlation of the experimental data with theoretical calculations,” Khlobystov said. “This is why our study discovers so much more than previous TEM studies.”

In addition, the results help explain the high abundance of C60 and C70 fullerenes (fullerenes composed of 60 or 70 carbon atoms) found in different methods of fullerene production. The researchers found that a large (more than 100 carbon atoms) initial graphene flake imposes a significant energy penalty during the curving step, so that its edges continue to be chipped away until it is small enough to curve. On the other hand, very small (less than 60 atoms) graphene flakes experience excessive strain on the during the curving step, preventing them from closing up. So to enable the thermodynamically driven formation process, fullerenes end up having a narrow range of diameters averaging about one nanometer, which corresponds to 60-100 carbon atoms.

“Understanding the fullerene formation process teaches us about the fundamental connection between different forms of carbon,” Khlobystov said. “Also, it opens new avenues for fabrication of molecular nanostructures using the e-beam. This is a new way to do chemistry and to study molecules!”

Explore further: Synthesis with a template: Carbon-free fullerene analogue

More information: Andrey Chuvilin, et al. “Direct transformation of graphene to fullerene.” Nature Chemistry, Vol. 2, June 2010. DOI: 10.1038/NCHEM.644


Related Stories

Producing graphene layers using crystallization

March 2, 2010

( -- Ever since it's relatively recent discovery, graphene has generated a great deal of interest. Graphene is extracted from graphite in many cases, and consists of a sheet of carbon atoms bound together in a ...

Seeing Moire in Graphene

April 27, 2010

( -- Researchers at the National Institute of Standards and Technology and the Georgia Institute of Technology have demonstrated that atomic scale moiré patterns, an interference pattern that appears when ...

Doping graphene

June 1, 2010

An organic molecule that has been found to be effective in making silicon-based electronics may be viable for building electronics on sheets of carbon only a single molecule thick. Researchers at the Max Planck Institute ...

Recommended for you

Testing TVs and tablets for 'green' screens

August 21, 2017

To improve viewing pleasure, companies have developed television—and tablet screens—that include quantum dots to enhance brightness and color. Some quantum dots are made with potentially harmful metals, which could leach ...

Going nano in the fight against cancer

August 17, 2017

Imagine being able to see the signs of cancer decades before we can now. URI Chemical Engineering Assistant Professor Daniel Roxbury and researchers from Memorial Sloan Kettering Cancer Center have invented a technique that ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 11, 2010
With a way to make them next comes the question can we use them?
5 / 5 (2) Jun 11, 2010
- Let the engineers figure out a use for it. That's not our concern.

- Maybe somebody already has a use for it, one for which it's perfectly designed.

- Looks at the facts: very high power, portable, limited firing time, unlimited range. All you'd need is a big spinning mirror....

/slap! -- Sorry, I was just having an 80s movie flashback... as you were. :)
not rated yet Jun 11, 2010
I kinda saw a chicken head turn into a fish head in that vid. Are these formations taking place in a vacuum?
not rated yet Jun 11, 2010
Buckyballs are so stable, so how can we use them? Dope them with impurities is one way. When we get disorderly on the nanoscale, we get new properties. Basically, instability implies relationship to others.
not rated yet Jun 18, 2010
It's tommorrows hope for for replacing silicon for use in nano tech electronic chips. Smaller, faster, more energy efficient computer chips!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.