Discovery in 'pop' science reveals the elegant, complex way bubbles burst (w/ Video)

June 9, 2010, Harvard University
Instead of simply vanishing, a large bubble disperses into a ring of smaller bubbles (as seen on the surface of a wine glass). Credit: Courtesy of Jacy Bird, Harvard School of Engineering and Applied Sciences

On the surface of things, how a bubble bursts may seem to be a simple, unremarkable event. In the June 10th issue of Nature, engineers at Harvard report just the opposite, having uncovered the beautifully complex physics behind rupturing bubbles.

Instead of simply vanishing, a large bubble disperses into a ring of smaller . The finding could be appropriately called an advance in "pop" science.

Lead author James C. Bird, a graduate student at the Harvard School of Engineering and Applied Sciences (SEAS), and his colleagues believe they have stumbled upon a universal behavior in how bubbles pop that holds as true for suds in a sink as it does for foam in the ocean.

"In order to minimize surface area, a bubble will be nearly hemispherical when it is in contact with a solid or liquid ," explains Bird. "We found that when these hemispherical bubbles pop, there is a two step process that can create a ring of smaller bubbles. While the resulting smaller bubbles have long been seen, until now the 'how' has never been reported in the literature."

The curved nature of the bubble plays a critical role, as the shape leads to higher pressure on the inside than on the outside of the bubble. Once the bubble opens up (i.e., bursts) it equilibrates, resulting in an inward net force due to the surface tension.

A smaller, daughter bubble created by the rupture of a larger bubble ruptures on a much faster timescale and also forms a jet. This jet breaks up into micron-sized droplets which are propelled into the atmosphere at speeds exceeding 5 m/s. Therefore the rupture of a centimeter-sized bubble can lead to the aerosolization of dozens of fine droplets into the atmosphere. Credit: Courtesy of the Harvard School of Engineering and Applied Sciences

"In the first step, the forces acting on the bubble cause the film to fold in on itself as it retracts and therefore trap a pocket of air in the shape of a torus, or donut. In the second step, surface tension breaks this torus of air into a ring of smaller bubbles just like surface tension breaks a thin stream of water from a faucet into individual droplets," adds Bird.

The cascade effect is short lived, occurring no more than twice in experiments to date. "The smallest bubbles no longer form a spherical cap and reintegrate into the liquid; this is the end of the cascade."

Since the popping process happens too rapidly to be seen with the naked eye, the team used high-speed cameras to film the collapse. Based upon observing the video, they then constructed a numerical model to test and replicate their experimental assumptions.

Bird and one his co-authors, Laurent Courbin, a former SEAS research associate, were inspired to study how bubbles pop during a late night lab session. As they were investigating ways to spread bubbles on different surfaces, the pair noticed the resulting rings and decided to take a closer look.

"After that point, any time I was just walking around during a rainy day I'd look at the bubbles popping on puddles," says Bird. "When I went swimming in the ocean I would watch the bubbles on the surface and just see if I could notice the same effect. And I soon realized it was everywhere."

The physics behind bursting appears to be independent of the material of the bubble. The investigators were surprised to find that the ring effect is still seen with fairly viscous liquids like oil and even in solutions up to 5,000 times as viscous as water. Bird is anxious to study similar popping effects in more exotic materials such as molten glass, lava, and mud.

While understanding how bubbles pop may not offer any near-term applications, the researchers expect that understanding how to create small bubbles from larger ones could one day help inform a variety of fields.

This is the original movie of the bubble dynamics shown in Fig. 1E-G. The interfacial bubble ruptures, uncovering a dimple on the water surface. The high curvature of this dimple causes a jet to form; since this jet does not have enough kinetic energy to be propelled into the atmosphere it returns to the interface. Yet, around the jet, there is a ring of smaller bubbles formed during the film retraction. One of these daughter bubbles ruptures at 56 ms (left side of movie) Credit: Courtesy of Harvard School of Engineering and Applied Sciences

"We have provided a general explanation of why these rings of smaller bubbles can be observed," says co-author Howard A. Stone, Bird's adviser and now the Donald and Elizabeth Dixon Professor in Mechanical and Aerospace Engineering at Princeton. "We think this study highlights one role for larger bubbles in aerosol formation."

It is well known that when small bubbles pop on a surface tiny droplets are ejected upwards. The effect can be readily seen and felt with carbonated sodas. Bubble-mediated aerosols are also relevant to applications in health and climate.

The shooting droplets have been shown to transfer any infectious material as well as dissolved gases and salt from large bodies of water, such as the ocean, into the air. Bubbles over a few millimeters in diameter have tended to be dismissed by researchers as not producing aerosols.

The team's findings, however, may modify this belief as they further uncover how larger bubbles can be a source for these smaller, droplet-creating bubbles.

"So much of cutting-edge research can only be seen with specialized equipment. What I love about this study is that the overall effect can be seen by anyone in their kitchen," concludes Bird. "It's a relatively simple effect and yet you end up with these beautiful patterns and something that is universal."

Experiment at Home!

It’s not often that cutting-edge science can be carried out by anyone in their kitchen. Yet the inspiration for an article appearing in the June 10th issue of Nature, can be recreated quickly with some soapy water, a glass, and a thin straw.

To try this experiment, dip one end of the straw in the water to get it soapy, then place that end onto the glass while blowing into the other end of the straw in order to create a small (approximately 1 inch) hemispherical bubble onto the glass.

Now, wait for the bubble to pop, or if you get impatient, pop the bubble with your finger.

Look closely around the rim of the bubble, and you might notice a ring of smaller bubbles.

Explore further: 'Armored' bubbles can exist in stable non-spherical shapes (Update)

Related Stories

Mysterious nanobubble burst?

December 2, 2008

( -- The nanobubbles that develop on submerged surfaces should not really be able to exist. Because of the enormous internal pressure, they should disappear within a short time. Nevertheless, they sometimes last ...

Bubble machine studies chaotic behavior

December 12, 2005

Harvard University scientists say they've produced an example of self-organized complexity in a rudimentary microfluidic bubble generator.

Researchers: Champagne's aroma comes from bubbles

September 28, 2009

(AP) -- Don Ho was right. It is the tiny bubbles. A team of researchers - in Europe not surprisingly - found that Champagne's bursting bubbles not only tickle the nose, they create a mist that wafts the aroma to the drinker.

I'm forever imploding bubbles

April 7, 2009

The National Physical Laboratory (NPL) has developed the first sensor capable of measuring localized ultrasonic cavitation - the implosion of bubbles in a liquid when a high frequency sound wave is applied. The sensor will ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 09, 2010
late-night lab session!..haaa
don't bogart that beer my friend
"pop" it over to meeee....oh and where'd
i put that high speed camera?
not rated yet Jun 13, 2010
maybe it works by fractals. ever think when those bubbles burst, they form a ring of even smaller bubbles around each small bubble? and again and again and again forever if undisturbed?
not rated yet Jun 21, 2010
and again and again and again FOREVER if undisturbed?

There comes a point when the concept of further bubbles become meaningless (what does it mean to have a bubble that's smaller than a molecule of the fluid forming the bubble?)

And from the article:
The cascade effect is short lived, occurring no more than twice in experiments to date. "The smallest bubbles no longer form a spherical cap and reintegrate into the liquid; this is the end of the cascade."

Although I imagine once you figure out what parameter(s) control whether only one or two cascades occur, you could try to tweak your experiment to attain 3 cascades, and so on.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.