New INL invention could aid Mars probes' search for life

May 24, 2010
The next generation of Mars rovers will use mass spectrometers to search for signs of life, such as amino acids, on the Red Planet. Most current mass spectrometers rely heavily on airflow to guide ionized soil samples through an inlet, down a channel and into a trap for analysis. But this system is less than ideal for Mars missions like ExoMars, due to launch in 2018: airflow requires pumps, and pumps are heavy and energy-hungry. INL's new technology guides ions efficiently using versatile, complex electric fields. The invention could greatly reduce the need for pumps, helping make ExoMars' life-detecting tools smaller, cheaper and more sensitive. Credit: Idaho National Laboratory

The next generation of Mars rovers could have smaller, cheaper, more robust and more sensitive life-detecting instruments, thanks to a new invention by scientists at the U.S. Department of Energy's Idaho National Laboratory.

The INL team has come up with an efficient new way to generate complex electric fields, which will make it easier to direct ions, or charged particles, along specified paths. The researchers have now filed a patent application for their Total Ion Control method, a key advance in the field of mass spectrometry. Equipment based on TIC could make the Mars Analyzer (MOMA) — part of the ExoMars mission scheduled for launch in 2018 — a better life-detecting tool.

"This is a novel way to shape electric fields for moving ions around," said INL engineer Tim McJunkin, who helped develop the new technology. "It can improve MOMA, and it could improve commercial instruments."

Mass spectrometry allows scientists to determine a sample's . The technique has many applications, from flagging explosives at airport screening stations to determining how medicines move through the human body. And it's one of the best ways to find signs of life, such as proteins and amino acids, on other worlds.

In some mass spectrometers, a sample — for instance, a few grains of Martian soil — is vaporized, often with a laser. The gas is then ionized, and the charged particles flow through an inlet, down a channel and into an . The ions are then identified based on details of their movement, which depend on their mass and .

To get ions to stream into the trap — rather than hit the channel walls and "die" — most current mass spectrometers rely heavily on air flow created by pumps. This system is less than ideal for Mars missions, though; pumps are heavy, and they use a lot of energy.

TIC could assist spectrometers such as MOMA. New TIC-based ion inlets greatly reduce the need for pumps, getting good ion flow solely by generating versatile, intricate electric fields. Since ions are charged particles, properly constructed fields can guide ions safely to the trap all by themselves.

A few other ion inlet technologies attempt to do the same thing, but INL's invention boasts many advantages. For one thing, TIC-based inlets should be cheaper and more robust than their competitors, because they're simpler to construct and have fewer parts. Other devices that generate elaborate, complex electric fields tend to be elaborate and complex themselves. They have multiple, precisely configured electrodes interspersed with other materials that serve as insulators. And they require complicated control electronics, too.

TIC-based solutions, on the other hand, use only a single electrode, and they don't need any insulators. They can be made from many different semi-conducting materials, such as graphite, glass, silicon or polymers. And the fields TIC inlets can generate are not tied to their own shape, meaning they can be incorporated into a wider range of spectrometer designs.

Because of their simple construction, TIC-based inlets are also much smaller and lighter than other types, weighing less than an ounce. This minuscule mass is a big plus for space missions, since it currently costs about $10,000 to put one pound of payload into Earth orbit (and far more to get that payload to Mars).

Energy consumption is another big concern for missions like ExoMars, which is a joint effort between the European Space Agency and NASA. "The ExoMars rover will be powered by nothing but solar," said INL scientist and TIC co-inventor Jill Scott. "So all of its instrument components will have to be very low-power."

INL's new invention hits that mark, too. At a maximum, it requires just 100 milliwatts of power — one thousand times less than a 100-watt light bulb.

And on top of these advantages, TIC delivers outstanding performance. Tests at INL have shown that TIC inlets shepherd 10 times as many ions down the pike and into the trap as commercially available inlets do. Such efficiency is key to instruments like MOMA, since any signs of life in the will likely be few and far between, if they exist at all.

The INL researchers are currently talking to Johns Hopkins University scientist LuAnn Becker, leader of the U.S. MOMA team, about incorporating a TIC-based inlet into MOMA. But the new invention could find many other applications in many different fields, according to Scott.

"This is an enabling technology," she said. "If you want to move ions around cheaply and robustly, and without much weight, this is the way to do it."

Explore further: NASA funds search for past life on Mars

Related Stories

NASA funds search for past life on Mars

January 18, 2007

The National Aeronautics and Space Administration has awarded a $750,000 grant to a U.S. researcher for help in searching for evidence of past life on Mars.

UC-Santa Barbara to direct Mars soil test

December 14, 2005

The European Space Agency announced Tuesday its support of a program that will include development of an instrument for testing deep soil samples on Mars.

Carnegie Mellon scientist to build unique mass spectrometer

January 11, 2006

Carnegie Mellon University's Mark Bier has received a $546,000 grant from the National Science Foundation's Instrument Development for Biological Research program to build a heavy-ion mass spectrometer. This one-of-a-kind ...

X marks the spot: Ions coldly go through NIST trap junction

April 8, 2009

( -- Physicists at the National Institute of Standards and Technology have demonstrated a new ion trap that enables ions to go through an intersection while keeping their cool. Ten million times cooler than in ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.