Hinode Discovers the Origin of White Light Flare

May 20, 2010
Fig. 1, above, White light images of solar surface observed by the Hinode Solar Optical Telescope at 22:07 UT, before the flare, and below, at 22:09 UT, during the flare on Dec. 14, 2006. Image Credit: NASA/JAXA

(PhysOrg.com) -- A joint Japan-United States research team has identified the origin of the white light emission in solar flares.

The team, led by Dr. Kyoko Watanabe, an aerospace project research associate at the Japan Aerospace Exploration Agency, made its discovery by quantitatively analyzing an X-class solar flare, which was observed by two successive, solar-observing satellites: and the NASA SMEX mission RHESSI. The origin of the white had not been clarified since its first discovery about 150 years ago.

A solar flare is the most energetic explosion observed in the solar system. Different ways of viewing solar flares include X-rays, radio and chromospheric spectral lines. A large percentage of flares are recognized as a result of associated brightening in the visible light spectrum, and thus are called white light flares.

British astronomer Richard Carrington made the first observation of solar flares in 1859 by sketching details of sunspots, including bright features that at times corresponded to white light emissions. However, the occurrence of such emissions is infrequent, leaving the mechanism for their creation unclear.

The Solar Optical Telescope, aboard the solar observing satellite Hinode, provides the white light images, allowing scientists for the first time to accurately study the brightness and its time variations. The Hinode observations completed so far indicate that many solar flares are accompanied by white light emissions. Hinode was launched on Sept. 23, 2006 by JAXA, in partnership with NASA and in collaboration with space-agency partners in the United Kingdom, Norway, Europe and Japan's National Astronomical Observatory.

White light emissions were observed by the Solar Optical Telescope during an X-class flare that occurred at 22:09 UT on Dec. 14, 2006 (see Fig. 1). The RHESSI satellite simultaneously recorded hard X-ray emissions, an indicator of non-thermal electrons accelerated by solar flares. The team found that the spatial location and temporal change of white light emissions are correlated with those of hard X-ray emissions (see Fig. 2). Moreover, the energy of white light emissions is equivalent to the energy supplied by all the electrons accelerated to above 40 keV (~40 percent of the light speed). This finding strongly suggests that highly accelerated electrons are responsible for producing white light emissions.

Hard X-rays are emitted when accelerated electrons impact the dense atmosphere near the solar surface. Normally, emissions primarily come from the solar surface, whereas 40 keV electrons can penetrate into the atmosphere about 1,000 km above the solar surface, i.e., the chromosphere.

Fig.2: White light emission, left, taken by Hinode/SOT, and the difference image of white light emission and RHESSI hard X-ray contours at 22:09 UT. The background image is the differential white light image (the average of the images taken at 22:07 UT and 22:17 UT is subtracted). Blue contours show 40-100 keV emission. Image credit: NASA/JAXA

Particle acceleration is one of the many mysteries surrounding solar flares. Modeling energy transfer of high-energy particles in the solar atmosphere is an important subject for further improving human understanding of particle acceleration. Highly accelerated particles may travel toward the Earth and cause geomagnetic storms, resulting in impacts to Earth-orbiting hardware and human activity on the surface. Now, as solar activity gradually increases after a very long period of minimal high energy activity, solar physicists are hoping the increased solar activity will provide Hinode with additional opportunities to observe and extend its observations.

Explore further: Hinode helps unravel long-standing solar mysteries

More information: “G-band and Hard X-ray Emissions of the 2006 December 14 Flare Observed by Hinode/SOT and RHESSI”, The Astrophysical Journal, No.715, pp. 651-655, 2010.

Related Stories

Hinode helps unravel long-standing solar mysteries

August 22, 2007

A year after launch, scientists working with Hinode, a Japanese mission with ESA participation, are meeting at Trinity College, Dublin, to discuss latest findings on solar mysteries - including new insights on solar flares ...

Science with the solar space observatory Hinode

March 20, 2008

The solar space observatory Hinode was launched in September 2006, with the name "Hinode" meaning sunrise in Japanese. The Hinode satellite carries a solar optical telescope (SOT), an X-ray telescope (XRT), and an EUV imaging ...

Jupiter: A cloudy mirror for the Sun?

March 7, 2005

Astronomers using the European Space Agency's XMM-Newton telescope have discovered that observing the giant planet Jupiter may actually give them an insight in to solar activity on the far side of the Sun! In research reported ...

A Massive Explosion on the Sun

April 25, 2007

Astronomers are calling the Japanese Hinode spacecraft a "Hubble for the sun." Watch this movie and you'll see why.

The Sun Loses its Spots

July 24, 2007

While sidewalks crackle in the summer heat, NASA scientists are keeping a close eye on the sun. It is almost spotless, a sign that the Sun may have reached solar minimum. Scientists are now watching for the first spot of ...

Solar Fireworks Signal New Space Weather Mystery

May 24, 2005

The most intense burst of solar radiation in five decades accompanied a large solar flare on January 20. It shook space weather theory and highlighted the need for new forecasting techniques, according to several presentations ...

Recommended for you

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) May 23, 2010
Thanks for an interesting report.

"Particle acceleration is one of the many mysteries surrounding solar flares. "

Almost certainly the acceleration is caused by deep-seated magnetic fields of ancient origin ["Super-fluidity in the solar interior: Implications for solar eruptions and climate", Journal of Fusion Energy 21 (2002) 193-198].

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.