

Computing, Sudoku-style

April 28 2010, by Larry Hardesty

When Alexey Radul began graduate work at MIT's Computer Science
and Artificial Intelligence Lab in 2003, he was interested in natural-
language processing -- designing software that could understand ordinary
written English. But he was so dissatisfied with the computer systems
that natural-language researchers had to work with that, in his
dissertation, he ended up investigating a new conceptual framework for
computing. The work, which Radul is now pursuing as a postdoc in the
lab of Gerald Sussman, the Matsushita Professor of Electrical
Engineering, is still in its infancy. But it could someday have
consequences for artificial-intelligence research, parallel computing and
the design of computer hardware.

1/5

Artificial-intelligence systems, Radul explains, often tackle problems in
stages. A natural-language program trying to make sense of a page of
written text, for instance, first determines where words and sentences
begin and end; then it identifies each word’s probable part of speech;
then it diagrams the grammatical structure of the sentences. Only then
does it move on to stages with names like “scope resolution” and
“anaphora.” The process might have a dozen stages in all.

In a multistage process, however, errors compound from stage to stage.
“Even if they’re really good stages, they’re 95 percent,” Radul says.
“Ninety-five percent is considered extraordinary.” If each stage is 95
percent accurate, a five-stage process is 77 percent accurate; a 20-stage
process — by no means unheard-of in AI research — is only 36 percent
accurate.

Systems that can feed information from later stages back to earlier
stages can correct compounding errors, but they’re enormously
complicated, and building them from scratch is prohibitively time
consuming for most researchers. A few such single-purpose systems
have been designed for particular applications, but they can’t easily be
adapted to new problems.

Branching out

Radul envisioned a new type of computer system that would handle
multidirectional information flow automatically. Indeed, not only would
it pass information forward and backward through stages of a multistage
process, but it would pass data laterally, too: The results of one stage
could be fed into, say, two others, which would attack a problem from
different directions simultaneously, reconciling their answers before
passing them on to the next stage. At that point, the stages of a process
wouldn’t really be stages at all, but computational modules that could be
arranged in parallel or in series, like elements in an electrical circuit.

2/5

Programmers would simply specify how each module was connected to
those around it, and the system would automatically pass information
around until it found solutions that satisfied the constraints imposed by
all the modules.

This reconception of programming, however, required a commensurate
reconception of computation. Classically, a computer is thought of as
having two main parts: a logic circuit and a memory. The logic circuit
fetches data from memory, performs an operation on the data, and ships
back the results. Then it moves on to the next chunk of data. In Radul’s
system, on the other hand, multiple logic circuits and memory cells are
arranged in a large network. Any given logic circuit can exchange data
with several different memory cells, and any given memory cell can
exchange data with several different logic circuits.

The danger with this arrangement is that logic circuits storing data in the
same memory cell may arrive at contradictory conclusions. Which
conclusion should the memory cell store? Instead of working together to
solve a problem, the logic circuits could end up simply overwriting each
other’s data.

In the prototype system that he developed for his doctoral dissertation,
Radul solved this problem by devising memory cells that don’t so much
store data as gradually accumulate information about data. One logic
circuit, for instance, might conclude that the value of some variable is
between five and 15; the memory cell will register that the number it’s
storing falls within that range. Another logic circuit, with access to the
same memory cell, might conclude that the value of the variable is
between 10 and 20; the memory cell would thus contract the range of the
value it’s storing to between 10 and 15. A good analogy might be
someone solving a Sudoku puzzle, who’s identified two or three
candidate values for a puzzle square and jots them in the corner,
expecting to winnow them down as new information comes to light.

3/5

http://web.mit.edu/~axch/www/phd-thesis.pdf

Owning up

A programmer using Radul’s system is free to decide what kinds of data
about data the memory cells will store. But in his prototype, Radul
enabled the memory cells to track where data comes from, a capacity
that he thinks could be useful in a wide range of applications. In
explaining this aspect of the system, Radul assigns the logic circuits
arbitrary names. Say that a group of three logic circuits — Alice, Bob
and Carol — converged on a value between 10 and 15 for some variable,
but a fourth circuit — Dave — assigned the variable a value of 237. The
system could warn the entire network that the results of Dave’s
calculations are suspect and should be given less weight until new
information propagating through the network brings them in line with
everyone else’s. (It’s also possible, however, that the new information
could vindicate Dave and force Alice, Bob and Carol to revise their
initial conclusions.)

Again, the Sudoku analogy might help. Sudoku solvers sometimes make
mistakes; but once they’ve identified a mistake, it may already have
propagated across the whole puzzle. Radul’s system would, in effect,
automatically back out all the other errors that flow from the original
mistake.

Radul’s network of logic circuits and memory cells is an abstraction: It
describes how information flows through a computer system, not
necessarily the design of the system’s hardware. It so happens, however,
that computer chip manufacturers have reached the point where the only
way to improve performance is to add more “cores” — or logic circuits
— to each chip. Splitting up programming tasks so that they can run, in
parallel, on separate cores, is a problem that has bedeviled computer
scientists. But a mature version of Radul’s framework would allow
programmers to specify computational problems in a way that
automatically takes advantage of parallelism.

4/5

https://phys.org/tags/memory+cells/

“All of computing — all of it, object-oriented, parallel, all those kinds of
computing,” says Daniel Friedman, a professor of computer science at
Indiana University, “they put all the responsibility on the programmer.”
With a system like Radul’s, however, “large hunks of the responsibility
would likely go away.” Friedman cautions that “there’s a huge amount of
research to be done to demonstrate all that. All they’ve done so far is
demonstrate it on a very small scale.” But, he adds, “this is spectacular
stuff. I’m just looking for the right student to come along to get all fired
up about it.”

Provided by Massachusetts Institute of Technology

Citation: Computing, Sudoku-style (2010, April 28) retrieved 25 April 2024 from
https://phys.org/news/2010-04-sudoku-style.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://phys.org/news/2010-04-sudoku-style.html
http://www.tcpdf.org

