Studying Titan's Lakes on Earth

January 28, 2010 by Michael Schirber
This Cassini image shows Kraken Mare, a huge lake of liquid hydrocarbons near Titan's north pole. Credit: NASA/JPL/Space Science Institute

A new project aims to replicate the surface on the moon Titan in order to learn more about its hydrocarbon lakes. This study could also tell us about the chemistry that led to the origin of life on early Earth.

The recent discovery of lakes on Saturn's make it the only other object in the solar system known to have liquid on its surface. However, dipping 179°C (290°F) below freezing, these lakes are definitely not filled with water.

"The water is frozen so solid on Titan that you can liken it to silicate rocks on Earth," says Vincent Chevrier of the University of Arkansas.

The liquid on Titan is likely a hydrocarbon cocktail of mostly methane and ethane, judging from observations by the space probe. The exact proportions are uncertain because scientists have little data on how these substances behave at such low temperatures.

"There was never before much interest in the liquid and solid properties of methane and ethane, since they are normally gases on Earth's surface," Chevrier says.

But that's all changed. Titan's "liquid assets" drive geologic and chemical processes that may mimic those on our own planet. To better understand this, Chevrier and his colleagues have received NASA funding to recreate Titan's surface in a lab.

A flat, calm, liquid methane-ethane lake on Titan is depicted in this artist's concept. Credit: Copyright 2008 Karl Kofoed

Lake country

Thanks to radar maps taken by Cassini, we know that the polar regions of Titan are dotted with numerous lakes. Some of these are as large as the Great Lakes in the U.S.

Scientists are not sure where these large bodies of hydrocarbons come from. One possibility is that methane rain and possibly ethane snow drive a "hydrological cycle" that eventually drains into these lakes.

Alternatively, Titan may have large reservoirs of liquid underground, and the lakes are the result of impact craters carving deep enough to expose this sub-surface ocean.

It has been difficult to rule out any of these hypotheses in part because the process of evaporation from the hydrocarbon lakes in Titan’s environment is poorly understood. If researchers knew how fast the lakes were disappearing, they would have a better sense of what makes them appear.

"The rates of exchange of hydrocarbons over seasonal and potentially longer climate cycles on Titan is an important goal of current research," says Oded Aharonson of the California Institute of Technology, who is not involved with this new project.

Some of the lakes on Titan are as big as those on Earth. Credit: NASA/JPL/USGS

Mini-lakes

For their part, Chevrier's team will be measuring the evaporation rates of methane and ethane in a Titan simulation chamber. To mimic the moon's atmosphere, the 2-meter-high steel cylinder will hold ultra-cold nitrogen gas at a pressure about 50% higher than on Earth.

Chevrier's group will introduce small quantities of methane and/or ethane into the chamber. Below about 95 Kelvin (or -178 degrees Celsius), the gas will condense into roughly 1 centimeter deep "mini-lakes" at the bottom of the cylinder. The researchers will then raise the temperature slightly and record the rate of evaporation.

It is assumed that ethane (whose molecules are heavier than methane's) will have a much slower evaporation rate, but by how much is unknown. It's even less clear what happens when methane and ethane are mixed together, along with nitrogen gas dissolving in from the atmosphere above.

"It is highly likely that the lakes are in fact complex mixtures of ethane, methane and nitrogen," Chevrier says. "We will study the behavior of pure compounds first and then shift to mixtures."

The team also plans to look at the possibility of other organic compounds mixing in with the Titan broth and perhaps slowing the evaporation.

Earth analog

Determining the evaporation rates on Titan will not only help sort out the geologic processes that formed the lakes, it also will provide some needed information about the atmospheric chemistry.

Titan is the only moon in our solar system with a substantial atmosphere. The moon’s surface is totally obscured by an orange haze made up of complex organics (called tholins), which form when methane is destroyed by ultraviolet light from the Sun.

This same sort of organic chemistry may have gotten the biological ball rolling on Earth billions of years ago.

"Titan shows how you can have organic reactions without life," Chevrier says. Such organic chemical reactions may have provided the first necessary steps towards the origin of life on Earth.

On Titan, because the methane-fueled organic reactions in the atmosphere end up destroying the methane molecules, to keep the reactions operating a constant source of gaseous methane is needed. The evaporation of from Titan’s lakes may be one such source, and Chevrier's data should help say whether it is enough.

"Titan's surface is rich with geological features similar to those found on Earth but based on different materials," says Christophe Sotin from the Jet Propulsion Lab in Pasadena. "So any lab experiment that can reproduce conditions on Titan and give some pieces of information of the processes that can happen on this moon are important."

Explore further: No oceans on Titan, say researchers

Related Stories

No oceans on Titan, say researchers

August 4, 2005

There are no oceans on Saturn's moon Titan and flat areas of the satellite appear to be solid and dry, U.S. astronomers said.

Titan's lakes could be explored by boat

December 22, 2009

(PhysOrg.com) -- If a suggestion to be made to NASA comes to fruition, vast lakes thought to be filled with liquid hydrocarbons near the north pole of Saturn's moon Titan, may one day be explored by boat.

Titan gives clues to Earth's early history

December 1, 2005

Readings from the Huygens probe of the surface and atmosphere around Saturn's largest moon, Titan, give researchers a peek back through time to when and how Earth's atmosphere formed, and how our primitive planet looked before ...

Cassini Finds Hydrocarbon Rains May Fill Titan Lakes

January 30, 2009

(PhysOrg.com) -- A region on Saturn's moon Titan's southern latitudes appears to have been flooded by a summer cloudburst of hydrocarbon rain, as seen in images from NASA's Cassini spacecraft taken before and after a large ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

mongander
not rated yet Jan 28, 2010
What killed all those gazillions of dinosaurs to produce all that fossil fuel?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.