New solvent technologies to replace use of harmful toxic acids

January 7, 2010

Scientists at the University of Leicester are spearheading the development of new ways to replace harmful, carcinogenic, toxic acids and electrolytes which are currently used in many commercial metal finishing and energy storage processes.

A team of academics, PhD students and PostDoc researchers from the University of Leicester's Department of Chemistry has received over €1 million funding to develop and apply environmentally friendly solvents.

The researchers have developed ionic liquids solvents which provide a safe, non-toxic, environmentally friendly alternative to harmful solutions. These new liquids can act as "drop-in" replacement technology, and perform as well as, or even better than, existing processes.

Overseeing the project is senior lecturer Dr Karl Ryder, who said:

"One of our aims is to improve the working environment for people within the manufacturing industry by replacing unpleasant acids or caustic processes with . The user experience is very similar for both and no additional equipment or training is required, but the user benefits from a more pleasant and safer working environment."

The funding obtained will drive forward an on-going programme of research in the Department that was started 4 and a half years ago by another EU project ( that aimed to develop new ionic liquid solvent technologies to transform metal finishing.

The grants will go towards three new major projects:

POLYZION is funded under the EU Seventh Framework Programme worth a total of €3.5 million with 9 University and Industrial partners. The concept of this project is to create an environmentally friendly and affordable for electric vehicle applications. It will develop a more sustainable technology that is light-weight, cheaper and more attainable as the batteries currently used are heavy, expensive and potentially harmful to the environment if damaged.

RECONIF uses environmentally sustainable ionic liquid solvents to extract metals form solid waste, instead of strong acids or caustic alkalis. The project will focus on recovering heavy metals from domestic battery waste and is funded by the EPSRC/ Technology Strategy Board.

ASPIS will start in 2010, and seeks to develop a new technology for surface treatment of circuit boards which are found in many electronic devices. The commercial processes currently in place are problematic, with failures expensive to industry, and ASPIS will aim to provide an alternative method with funding also from the EU Seventh Framework Programme.

Dr Ryder commented:

"The funding we have received will carry forward certain key promising aspects of work started with IONMET. Key aspects we will develop are the new battery technology and new surface finishing for circuit boards.

"The battery project is the most exciting for me, as it brings together two research themes I've had side by side for a long time, representing the culmination of two areas of work. I am confident it will be as good as it promises to be.

"It's nice to be involved with both the academic side and the cutting edge of industrial processes. This represents a very challenging combination of fundamental and applied science."

The three projects provide the opportunity to apply ionic liquid technologies to the manufacturing industry, providing a safer, more environmentally sustainable alternative to current commercially used methodologies.

Explore further: Data Effort Improves Flow Toward 'Greener' Chemistry

Related Stories

Data Effort Improves Flow Toward 'Greener' Chemistry

April 21, 2005

Jeopardy answer: Death Valley and "ionic liquids." Correct question: Where does a little bit of water make a whole lot of difference? Scientists at the National Institute of Standards and Technology (NIST) report* that flow ...

New Web database improves access to ionic liquid data

August 18, 2006

Chemical engineers and others designing "green" industrial processes using new ionic liquid solvents now have an important new resource, an on-line database of physical properties developed by the National Institute of Standards ...

Ray of light for water industry

April 28, 2005

Scientists at the University of Aberdeen are developing new technology that uses sunlight to treat dirty water and create electricity simultaneously. The three industrial partners - OpTIC Technium, Yorkshire Water and Scotoil ...

Research to make flying more environmentally friendly

February 15, 2005

Europe’s airplane engine manufacturers are now pooling their resources to make flying more environmentally friendly. In collaboration with some select universities and university colleges they are using millions in financial ...

Recommended for you

New X-ray spectroscopy explores hydrogen-generating catalyst

November 22, 2017

Using a newly developed technique, researchers from Japan, Germany and the U.S. have identified a key step in production of hydrogen gas by a bacterial enzyme. Understanding these reactions could be important in developing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.