Scientists see carbon chains preferred locales on popular catalyst

January 6, 2010
Scientists see carbon chains preferred locales on popular catalyst

( -- Prima donnas. Floppy chains of carbon atoms are particular about where they want to be on a titanium dioxide catalyst, according to a new study from Pacific Northwest National Laboratory and the University of Texas at Austin. The catalyst's surface resembles corrugated cardboard: ridges of oxygen atoms run parallel to valleys of titanium atoms. Influenced by a weak attraction to the titanium, the hydrocarbon chain settles into the valleys.

The location of the hydrocarbon chain determines, in part, how well the model catalyst will perform. Understanding where the carbon chain is and why is vital data for those seeking to modify catalyzed reactions; for example, making the reactions faster or more selective. "It has to be in the right place," said Dr. Roger Rousseau, a catalysis expert at Pacific Northwest National Laboratory. "It can't just be anywhere.

To determine where and why the hydrocarbon chain resides on the catalyst, the team conducted both experimental and theoretical studies. The project began with a (STM), which provided snapshots of the catalyst's surface. The microscope is located at the Department of Energy's EMSL, a national scientific user facility at PNNL.

The scientists added alcohol molecules to the surface. The alcohol's oxygen atom shed its hydrogen atom and slid into a vacant oxygen spot on the catalyst's surface. To understand how the length of the chain influenced its orientation, the researchers used alcohol molecules with eight and varied position of the hydroxyl (-OH) anchor from the very end to the middle of the hydrocarbon chain.

Using the STM, the scientists saw that the hydrocarbon chains, known as alkyl chains, had distinct preferences regarding where they resided.

Then, the theoretical chemists used the atomic-level information from the microscopy images to perform density functional theory calculations with a van der Waals correction. The calculations showed that the alkyl chains preference was based on a weak attraction between the carbon chains and the titanium atoms as well as a slight repulsion between the carbon and the . These weak attractions are known as van der Waals forces.

Further, the scientists showed that the rotation of hydrocarbon chains anchored in the middle over the barrier of the oxygen rows is much harder than rotation of hydrocarbon chain anchored at the end. This is because when the anchor is in the middle, two hydrocarbon arms have to move over the oxygens as opposed to just one.

Knowing how titanium dioxide's surface influences the hydrocarbon chain's position, researchers are moving to investigate how the surface of another common , tungsten trioxide, reacts with alcohol molecules.

"This research is the first step to understanding how reactants align themselves for future reactions," said Dr. Bruce D. Kay, an expert in chemical reactions and molecular dynamics, who worked on the project.

Explore further: Experiments Prove Existence of Atomic Chain Anchors

More information: Zhang Z, R Rousseau, J Gong, BD Kay, and Z Dohnalek. 2009. "Imaging Hindered Rotations of Alkoxy Species on TiO2(110)." 131(49):17926-17932 Journal of the American Chemical Society. DOI: 10.1021/ja907431s

Related Stories

Experiments Prove Existence of Atomic Chain Anchors

February 3, 2005

Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the “links” in the chain, according to new measurements by physicists at the National Institute of Standards and Technology ...

New Direction for Hydrogen Atom Transfers

October 19, 2005

In the annals of chemistry, there are many examples of hydrogen atoms moving from metals to carbon atoms. But no one has ever directly observed the reverse reaction — hydrogen atoms moving from carbon to a metal — until ...

Uniform tungsten trimers stand and deliver

September 18, 2006

Like tiny nano-soldiers on parade, the cyclic tungsten trioxide clusters line up molecule-by-molecule on the titanium dioxide platform. One tungsten atom from each cluster is raised slightly, holding forth the potential to ...

Sunlight turns carbon dioxide to methane

March 5, 2009

Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to Penn State researchers.

Road to greener chemistry paved with nano-gold

October 24, 2005

The selective oxidation processes that are used to make compounds contained in agrochemicals, pharmaceuticals and other chemical products can be accomplished more cleanly and more efficiently with gold nanoparticle catalysts, ...

Recommended for you

Molecular beacon signals low oxygen with ultrasound

December 8, 2017

Areas of hypoxia, or low oxygen in tissue, are hallmarks of fast-growing cancers and of blockages or narrowing in blood vessels, such as stroke or peripheral artery disease. University of Illinois researchers have developed ...

Targeting cancer cells by measuring electric currents

December 8, 2017

EPFL researchers have used electrochemical imaging to take a step forward in mapping the distribution of biomolecules in tissue. This technology, which uses only endogenous markers – rather than contrast agents – could ...

Studying gas mask filters so people can breathe easier

December 8, 2017

In research that could lead to better gas mask filters, scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been putting the X-ray spotlight on composite materials in respirators ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.