Nanoprobes hit targets in tumors, could lessen chemo side effects

December 14, 2009 by Brian Wallheimer

(PhysOrg.com) -- Tiny nanoprobes have shown to be effective in delivering cancer drugs more directly to tumor cells - mitigating the damage to nearby healthy cells - and Purdue University research has shown that the nanoprobes are getting the drugs to right cellular compartments.

Professor Joseph Irudayaraj and graduate student Jiji Chen, both in the Department of Agricultural and Biological Engineering, have found that the nanoprobes, or nanorods, when coated with the drug , are reaching the endosomes of , mimicking the delivery of the drug on its own. Endosomes perform a sorting function to deliver drugs and other substances to the appropriate locations.

"We have demonstrated the ability to track these nanoparticles in different cellular compartments of live cells and show where they collect quantitatively," said Irudayaraj, whose results were published early online in the journal ACS Nano. "Our methods will allow us to calculate the quantities of a drug needed to treat a cancer cell because now we know how these nanoparticles are being distributed to different parts of the cell."

The nanoprobes, which are about 1,000 times smaller than the diameter of a human hair, are made from gold and . An MRI machine can track the magnetic portions of the nanoprobes while a more sensitive microscopy process can detect the gold.

The nanoprobes were inserted into live human tumor cells during laboratory testing. Using fluorescent markers to differentiate organelles, or sub-units of cells, Irudayaraj's group was able to determine the number of nanoprobes accumulating in the endosomes, lysosomes and membranes of those cells.

Cancer treatments often use high drug concentrations that damage healthy cells near a tumor. While Herceptin is attracted to and attaches to the proteins on the surface of breast cancer cells, healthy surrounding cells absorb some of the chemotherapy drugs through normal fluidic intake.

Irudayaraj said targeting only tumor cells with nanoprobes would require less drugs and mitigate the side effects of cancer chemotherapy drugs.

"Each nanoparticle acts like a deliverer of a mail package, or dose, of the drug directly to the appropriate location," Irudayaraj said.

In Irudayaraj's laboratory tests, endosomes received a major portion of the nanorods containing Herceptin. Lysosomes, which act like garbage collection units in cells and hinder a drug's effectiveness, received a lower concentration of nanorods.

Irudayaraj said those percentages are similar to how cells distribute drugs through traditional treatments.

Irudayaraj will next try to attach multiple drugs to a nanoparticle and track their distribution within cells. He also wants to determine the timing of a drug's release from the nanoprobes after attaching to the .

More information: Quantitative Investigation of Compartmentalized Dynamics of ErbB2 Targeting Gold Nanorods in Live Cells by Single Molecule Spectroscopy, Jiji Chen and Joseph Irudayaraj, ACS Nano.

Source: Purdue University (news : web)

Explore further: Nanoscopic probes can track down and attack cancer cells

Related Stories

Gold nanoparticles may pan out as tool for cancer diagnosis

July 31, 2007

When it comes to searching out cancer cells, gold may turn out to be a precious metal. Purdue University researchers have created gold nanoparticles that are capable of identifying marker proteins on breast cancer cells, ...

Herceptin targets breast cancer stem cells

July 9, 2008

A gene that is overexpressed in 20 percent of breast cancers increases the number of cancer stem cells, the cells that fuel a tumor's growth and spread, according to a new study from the University of Michigan Comprehensive ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.