

Inventing language

November 10 2009, by Larry Hardesty

Institute Professor and Associate Provost for Faculty Equity Barbara Liskov.
Photo: Donna Coveney

(PhysOrg.com) -- Last Thursday, the day after the New York Yankees
won their first World Series of the 21st century, MIT Institute Professor
Barbara Liskov, the 2008 recipient of the Turing Award — frequently
called the Nobel Prize for computer science — delivered the first lecture
of the 2009 Dertouzos Lecture Series.

John Guttag, the Dugald C. Jackson Professor in the Department for
Electrical Engineering and Computer Science, introduced Liskov, and he
greeted the crowd of more than 150 people wearing a Yankees cap. The
cap, he claimed, had a purpose other than pouring salt in the wounds of
disappointed Boston Red Sox fans: His PowerPoint presentation was
titled “Barbara Liskov: the Derek Jeter of Computer Science” — a

1/4

https://phys.org/tags/electrical+engineering/
https://phys.org/tags/computer+science/

reference to the Yankees’ star shortstop that drew hisses from the
audience. Guttag’s presentation also featured photos of Liskov dressed in
renaissance clothing and putting a tray of cookies in the oven —
“moonlighting as a baker to put her son through Harvard,” Guttag said,
“which was all the more poignant, since he could have gone to MIT for
free.”

Guttag waxed serious long enough to describe Liskov as one of his own
most valued mentors, and then Liskov took the podium. She opened with
a joke of her own: In large part, her Turing Award honored work she
had done in the 1970s, laying down principles for the organization of
programming languages that today are almost universally followed. After
the award was announced, she said, her husband spent a lot of time on
the computer Googling the reaction, and at some point, “he came upon a
quote from someone who said, ‘What did she get this award for?
Everyone knows this, anyway.’”

After that, Liskov was all business. The thrust of her talk was that, in the
1970s, it was emphatically not the case that “everyone knew this,” and
she described in great detail the intellectual environment in which she
did her pioneering work. The talk was not for the uninitiated: she began
by describing several papers from the early 1970s from which she had
drawn inspiration — with titles like “Go To Statement Considered
Harmful” and “Information Distribution Aspects of Design
Methodology” — but first conceded to the audience that while “many of
you have read them, I’m not sure all of you have.”

Liskov explained that, in the fall of 1972, after reviewing the literature
in the field, she came up with the idea for what today are called abstract
data types. Traditionally, a computer program would be a long list of
exhaustively detailed instructions, and anyone reading the code —
including the original programmer — could easily get lost. Abstract data
types are, effectively, repositories for the computational details of the

2/4

program, which let the programmer concentrate on the big picture. A
complicated program turns into some rather simple interactions between
the abstract data types. And indeed, the programmer can later change the
details of the data types’ instantiation — how they do their low-level
computations — without changing the overall structure of the program.

Liskov explained how, after coming up with the idea of abstract data
types, she and some collaborators created a programming language,
CLU, which put some of her ideas into practice. The rest of her talk was
largely a demonstration that CLU prefigured most of the ideas that are
commonplace in today’s programming languages — ideas with names
like polymorphism, type hierarchy, and exception handling.

During the question-and-answer session that followed the talk, Liskov
was asked the secret of her success. Part of her answer — which must
have chagrined some members of the audience — was that “I don’t work
that many hours a day.” “I always went home at night, and didn’t work in
the evening,” she said. “I always found that downtime to be really
useful.” She also, however, emphasized the importance of pursuing
research that’s interesting — rather than, say, the research that will
generate the most publications. That way, she said, “at the end, if you
fail, at least you did something interesting, rather than doing something
boring and also failing.” After the laughter died down, she added, “Or
doing something boring and then forgetting how to do something
interesting.”

Provided by Massachusetts Institute of Technology (news : web)

Citation: Inventing language (2009, November 10) retrieved 26 April 2024 from
https://phys.org/news/2009-11-language.html

3/4

http://www.physorg.com/partners/mit/
http://web.mit.edu/
https://phys.org/news/2009-11-language.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://www.tcpdf.org

