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(PhysOrg.com) -- In 1811, Joseph Fourier, the 43-year-old prefect of the
French district of Isčre, entered a competition in heat research sponsored
by the French Academy of Sciences. The paper he submitted described a
novel analytical technique that we today call the Fourier transform, and
it won the competition; but the prize jury declined to publish it,
criticizing the sloppiness of Fourier’s reasoning. According to Jean-
Pierre Kahane, a French mathematician and current member of the
academy, as late as the early 1970s, Fourier’s name still didn’t turn up in
the major French encyclopedia the Encyclopædia Universalis.

Now, however, his name is everywhere. The Fourier transform is a way
to decompose a signal into its constituent frequencies, and versions of it
are used to generate and filter cell-phone and Wi-Fi transmissions, to
compress audio, image, and video files so that they take up less
bandwidth, and to solve differential equations, among other things. It’s
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so ubiquitous that “you don’t really study the Fourier transform for what
it is,” says Laurent Demanet, an assistant professor of applied
mathematics at MIT. “You take a class in signal processing, and there it
is. You don’t have any choice.”

The Fourier transform comes in three varieties: the plain old Fourier
transform, the Fourier series, and the discrete Fourier transform. But it’s
the discrete Fourier transform, or DFT, that accounts for the Fourier
revival. In 1965, the computer scientists James Cooley and John Tukey
described an algorithm called the fast Fourier transform, which made it
much easier to calculate DFTs on a computer. All of a sudden, the DFT
became a practical way to process digital signals.

To get a sense of what the DFT does, consider an MP3 player plugged
into a loudspeaker. The MP3 player sends the speaker audio information
as fluctuations in the voltage of an electrical signal. Those fluctuations
cause the speaker drum to vibrate, which in turn causes air particles to
move, producing sound.

An audio signal’s fluctuations over time can be depicted as a graph: the x-
axis is time, and the y-axis is the voltage of the electrical signal, or
perhaps the movement of the speaker drum or air particles. Either way,
the signal ends up looking like an erratic wavelike squiggle. But when
you listen to the sound produced from that squiggle, you can clearly
distinguish all the instruments in a symphony orchestra, playing discrete
notes at the same time.

That’s because the erratic squiggle is, effectively, the sum of a number
of much more regular squiggles, which represent different frequencies
of sound. “Frequency” just means the rate at which air molecules go
back and forth, or a voltage fluctuates, and it can be represented as the
rate at which a regular squiggle goes up and down. When you add two
frequencies together, the resulting squiggle goes up where both the
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component frequencies go up, goes down where they both go down, and
does something in between where they’re going in different directions.

The DFT does mathematically what the human ear does physically:
decompose a signal into its component frequencies. Unlike the analog
signal from, say, a record player, the digital signal from an MP3 player is
just a series of numbers, representing very short samples of a real-world
sound: CD-quality digital audio recording, for instance, collects 44,100
samples a second. If you extract some number of consecutive values
from a digital signal — 8, or 128, or 1,000 — the DFT represents them
as the weighted sum of an equivalent number of frequencies.
(“Weighted” just means that some of the frequencies count more than
others toward the total.)

The application of the DFT to wireless technologies is fairly
straightforward: the ability to break a signal into its constituent
frequencies lets cell-phone towers, for instance, disentangle
transmissions from different users, allowing more of them to share the
air.

The application to data compression is less intuitive. But if you extract
an eight-by-eight block of pixels from an image, each row or column is
simply a sequence of eight numbers — like a digital signal with eight
samples. The whole block can thus be represented as the weighted sum
of 64 frequencies. If there’s little variation in color across the block, the
weights of most of those frequencies will be zero or near zero. Throwing
out the frequencies with low weights allows the block to be represented
with fewer bits but little loss of fidelity.

Demanet points out that the DFT has plenty of other applications, in
areas like spectroscopy, magnetic resonance imaging, and quantum
computing. But ultimately, he says, “It’s hard to explain what sort of
impact Fourier’s had,” because the Fourier transform is such a

3/4



 

fundamental concept that by now, “it’s part of the language.”
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