Compressing photonic signals for greater bandwidth

November 3, 2009,
To time-compress a signal, the signal is first converted to a spectrum in which the intensity of each wavelength corresponds to the signal at a moment in time. Then the spectrum is converted back to linear waveform by mixing it with a much shorter pulse.

Cornell researchers have developed an ingenious method to time-compress optical signals. The process could enable optical communication systems to carry many more bits per second or could also be used to generate short bursts of light with complex waveforms needed to control chemistry and physics experiments where changes are induced by light..

In tests, the researchers compressed a series of optical pulses carrying information at 10 gigabits per second (Gps) into a much shorter burst carrying the same information at 270 Gps.

The research is reported in the online edition of the journal Nature Photonics and in a forthcoming print edition.

Alexander Gaeta, professor of applied and engineering physics, calls the compression device a "temporal telescope." The "lenses" are two tiny optical waveguides on a designed by Michal Lipson, associate professor of electrical and computer engineering, in which signals can be manipulated by a process called "four-wave mixing." A signal and a "pump" are combined inside a waveguide only 300x550 nanometers in cross section, smaller than the wavelength of the infrared light traveling through it. (A nanometer is a billionth of a meter, about the length of three atoms in a row.) In the confined space, the two mix together to create a new, combined signal.

In the first waveguide a signal that varies in intensity over time -- in the demonstration case, a series of on and off pulses representing ones and zeros -- is combined with a pump pulse containing a broad range of wavelengths of light. The output is a spectrum of wavelengths in which the intensity, or brightness, at each wavelength corresponds to the amplitude of the original signal at a particular moment in time.

The second waveguide combines this spectrum with another pump pulse that is much shorter than the original signal and reverses the process, creating a signal that varies in amplitude corresponding to variations in intensity across the spectrum. The resulting output signal mirrors the original input, but is compressed to the length of the second pump pulse.

As Gaeta puts it, the "focal length" of the temporal lens is determined by the length of the pump pulse. As with conventional glass lenses, putting two temporal lenses together creates a telescope. In this case the system looks through the wrong end of the telescope, making things look smaller.

The demonstration was also done with more complex waveforms, including amplitude- and frequency-modulated signals.

Modulating light into complex waveforms over very short time scales is difficult and expensive, Gaeta said. This process, he said, makes it possible to generate a signal on a long time scale using off-the-shelf methods, and then compress the result to the desired time scale. The process also offers a new way to connect the relatively slow outputs of silicon electronics to photonic systems, he added.

The research was supported by the Defense Advanced Projects Agency and the Cornell Center for Nanoscale Systems, which is funded by the National Science Foundation and the New York State Office of Science, Technology and Academic Research.

Provided by Cornell University (news : web)

Explore further: Researchers develop ultrafast oscilloscope on a chip

Related Stories

Researchers develop ultrafast oscilloscope on a chip

November 6, 2008

( -- As photonics -- using beams of light in place of electricity for communications and computing -- becomes more common, engineers need new tools for troubleshooting. Now researchers at Cornell have created ...

Fiber-optic booster on a chip

February 20, 2008

More and more of our communications -- from text messages to high-definition television -- travel over optical fiber. At last count the United States was crisscrossed by more than 80 million miles of it, with some 225 million ...

A Broadband Light Amplifier on a Photonic Chip

July 6, 2006

Cornell University researchers have created a broadband light amplifier on a silicon chip, a major breakthrough in the quest to create photonic microchips. In such microchips, beams of light traveling through microscopic ...

Time Lens Speeds Up Optical Data Transmission

September 28, 2009

( -- Researchers at Cornell University have developed a device called a "time lens" which is a silicon device for speeding up optical data. The basic components of this device are an optical-fiber coil, laser, ...

Photonics: Pump up the bandwidth

June 21, 2006

U.S. scientists say they've developed an optical amplifier based on silicon that works across a wide range of frequencies.

Recommended for you

Zirconium isotope a master at neutron capture

January 17, 2019

The probability that a nucleus will absorb a neutron is important to many areas of nuclear science, including the production of elements in the cosmos, reactor performance, nuclear medicine and defense applications.

Mechanism helps explain the ear's exquisite sensitivity

January 16, 2019

The human ear, like those of other mammals, is so extraordinarily sensitive that it can detect sound-wave-induced vibrations of the eardrum that move by less than the width of an atom. Now, researchers at MIT have discovered ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 03, 2009
Id never thought that it would increase from 10 to 270, thats a huge improvement. Could this applied to an optical processor, then the data transfer rates would be huge. However that seems a long way off
not rated yet Nov 04, 2009
It will still need some kind of multiplexer, otherwise you will just get a short burst of high speed data with blank time between. Different input streams could be modulated into different spectral ranges, then the whole lot combined with a broader spectrum pulse at the end.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.