

P vs. NP -- The most notorious problem in
theoretical computer science remains open

October 29 2009, by Larry Hardesty

In the 1995 Halloween episode of The Simpsons, Homer Simpson finds a
portal to the mysterious Third Dimension behind a bookcase, and
desperate to escape his in-laws, he plunges through. He finds himself
wandering across a dark surface etched with green gridlines and strewn
with geometric shapes, above which hover strange equations. One of
these is the deceptively simple assertion that P = NP.

In fact, in a 2002 poll, 61 mathematicians and computer scientists said
that they thought P probably didn’t equal NP, to only nine who thought it
did — and of those nine, several told the pollster that they took the
position just to be contrary. But so far, no one’s been able to decisively
answer the question one way or the other. Frequently called the most
important outstanding question in theoretical computer science, the

1/5

https://phys.org/tags/computer+science/

equivalency of P and NP is one of the seven problems that the Clay
Mathematics Institute will give you a million dollars for proving — or
disproving. Roughly speaking, P is a set of relatively easy problems, and
NP is a set of what seem to be very, very hard problems, so P = NP
would imply that the apparently hard problems actually have relatively
easy solutions. But the details are more complicated.

Computer science is largely concerned with a single question: How long
does it take to execute a given algorithm? But computer scientists don’t
give the answer in minutes or milliseconds; they give it relative to the
number of elements the algorithm has to manipulate.

Imagine, for instance, that you have an unsorted list of numbers, and you
want to write an algorithm to find the largest one. The algorithm has to
look at all the numbers in the list: there’s no way around that. But if it
simply keeps a record of the largest number it’s seen so far, it has to look
at each entry only once. The algorithm’s execution time is thus directly
proportional to the number of elements it’s handling — which computer
scientists designate N. Of course, most algorithms are more complicated,
and thus less efficient, than the one for finding the largest number in a
list; but many common algorithms have execution times proportional to
N2, or N times the logarithm of N, or the like.

A mathematical expression that involves N’s and N2s and N’s raised to
other powers is called a polynomial, and that’s what the “P” in “P = NP”
stands for. P is the set of problems whose solution times are proportional
to polynomials involving N's.

Obviously, an algorithm whose execution time is proportional to N3 is
slower than one whose execution time is proportional to N. But such
differences dwindle to insignificance compared to another distinction,
between polynomial expressions — where N is the number being raised
to a power — and expressions where a number is raised to the Nth

2/5

power, like, say, 2N.

If an algorithm whose execution time is proportional to N takes a second
to perform a computation involving 100 elements, an algorithm whose
execution time is proportional to N3 takes almost three hours. But an
algorithm whose execution time is proportional to 2N takes 300
quintillion years. And that discrepancy gets much, much worse the larger
N grows.

NP (which stands for nondeterministic polynomial time) is the set of
problems whose solutions can be verified in polynomial time. But as far
as anyone can tell, many of those problems take exponential time to
solve. Perhaps the most famous problem in NP, for example, is finding
prime factors of a large number. Verifying a solution just requires
multiplication, but solving the problem seems to require systematically
trying out lots of candidates.

So the question “Does P equal NP?” means “If the solution to a problem
can be verified in polynomial time, can it be found in polynomial time?”
Part of the question’s allure is that the vast majority of NP problems
whose solutions seem to require exponential time are what’s called NP-
complete, meaning that a polynomial-time solution to one can be adapted
to solve all the others. And in real life, NP-complete problems are fairly
common, especially in large scheduling tasks. The most famous NP-
complete problem, for instance, is the so-called traveling-salesman
problem: given N cities and the distances between them, can you find a
route that hits all of them but is shorter than … whatever limit you
choose to set?

Given that P probably doesn’t equal NP, however — that efficient
solutions to NP problems will probably never be found — what’s all the
fuss about? Michael Sipser, the head of the MIT Department of
Mathematics and a member of the Computer Science and Artificial

3/5

Intelligence Lab’s Theory of Computation Group (TOC), says that the P-
versus-NP problem is important for deepening our understanding of
computational complexity.

“A major application is in the cryptography area,” Sipser says, where the
security of cryptographic codes is often ensured by the complexity of a
computational task. The RSA cryptographic scheme, which is commonly
used for secure Internet transactions — and was invented at MIT — “is
really an outgrowth of the study of the complexity of doing certain
number-theoretic computations,” Sipser says.

Similarly, Sipser says, “the excitement around quantum computation
really boiled over when Peter Shor” — another TOC member —
“discovered a method for factoring numbers on a quantum computer.
Peter's breakthrough inspired an enormous amount of research both in
the computer science community and in the physics community.”
Indeed, for a while, Shor’s discovery sparked the hope that quantum
computers, which exploit the counterintuitive properties of extremely
small particles of matter, could solve NP-complete problems in
polynomial time. But that now seems unlikely: the factoring problem is
actually one of the few hard NP problems that is not known to be NP-
complete.

Sipser also says that “the P-versus-NP problem has become broadly
recognized in the mathematical community as a mathematical question
that is fundamental and important and beautiful. I think it has helped
bridge the mathematics and computer science communities.”

But if, as Sipser says, “complexity adds a new wrinkle on old problems”
in mathematics, it’s changed the questions that computer science asks.
“When you’re faced with a new computational problem,” Sipser says,
“what the theory of NP-completeness offers you is, instead of spending
all of your time looking for a fast algorithm, you can spend half your

4/5

https://phys.org/tags/mathematics/

time looking for a fast algorithm and the other half of your time looking
for a proof of NP-completeness.”

Sipser points out that some algorithms for NP-complete problems
exhibit exponential complexity only in the worst-case scenario and that,
in the average case, they can be more efficient than polynomial-time
algorithms. But even there, NP-completeness “tells you something very
specific,” Sipser says. “It tells you that if you’re going to look for an
algorithm that’s going to work in every case and give you the best
solution, you’re doomed: don’t even try. That’s useful information.”

Provided by Massachusetts Institute of Technology (news : web)

Citation: P vs. NP -- The most notorious problem in theoretical computer science remains open
(2009, October 29) retrieved 26 April 2024 from https://phys.org/news/2009-10-p-np-notorious-
problem.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://phys.org/tags/algorithm/
http://www.physorg.com/partners/mit/
http://web.mit.edu/
https://phys.org/news/2009-10-p-np-notorious-problem.html
https://phys.org/news/2009-10-p-np-notorious-problem.html
http://www.tcpdf.org

