Micro Sparky: Engineering the tiniest Sun Devil

October 30, 2009 by Chelsea Brown
Micro Sparky: Engineering the tiniest Sun Devil
A doctoral engineering student has created Micro Sparky, a microscopic version of Sparky, the ASU Sun Devil mascot.

(PhysOrg.com) -- An Arizona State University engineering student may have found the tiniest - yet most cleverly inventive - way to show school spirit.

Adam Burke, a doctoral student in the School of Electrical, Computer and Energy Engineering, part of ASU’s Ira A. Fulton Schools of Engineering, created “Micro Sparky,” a microscopic etching of Sparky, the ASU Sun Devil mascot. Micro Sparky measures at slightly less than five microns in height. That’s smaller than a human , which typically measures at six to eight microns - too small be seen without an .

Burke describes the way he made Micro Sparky as a process similar to how an artist would etch patterns into glass or stone - only on a microscopic scale.

He fashioned the image by using electron beam lithography to etch it into a material called placed on top of another material called indium aluminum antimonide. Electron beam lithography was used to create the Sparky pattern by drawing it onto the surface on the materials with a directed beam of electrons. The process is achieved with a device that can emit streams of electrons. Magnets in the column through which the beam travels deflect electrons in a way that enables them to define patterns.

“You can control this process like the way you control your hand when you draw a picture,” says Burke, whose academic adviser is electrical engineering professor David Ferry, an ASU Regents’ Professor.

The image was further developed using a process similar to how a photographic image is developed from film in a chemical bath.

Once the pattern was developed, Burke used a chemical etchant to eat into the material in the exposed surface - and Micro Sparky was born.

The advanced materials Burke was able to use came from the U.S. Naval Research Laboratories. Its researchers produced the indium arsenide on indium aluminum antimonide material for their work to develop advanced microwave transistors (transistors that operate at higher frequencies in these rare materials).

Naval researchers gave some of the material to Burke to help him experiment with one of the devices he developed in his doctoral electrical engineering program.

His accomplishments at ASU have helped Burke earn a position as a senior research assistant in the College of Physics at the University of New South Wales in Australia.

Provided by Arizona State University (news : web)

Explore further: World's fastest method for transmitting information in cell phones and computers

Related Stories

Nanofabrication to lead to Quantum Computer

October 25, 2005

The team of scientists headed by professor Jeremy Levy at Pitts University has developed nanofabrication tools. The team has an electron beam lithography and nano engineering workstation - with an electron beam capable of ...

Intel and QinetiQ Collaborate On Transistor Research

February 9, 2005

The results of a two-year joint research programme by Intel Corporation and QinetiQ into new transistor technology that could become a promising candidate for making microprocessors in the middle of the next decade was made ...

Model explains how electron beams make nanotubes visible

February 8, 2006

Scanning electron microscopes are the workhorses of imaging structures on the scale of billionths of a meter. Typically, they work by shooting a beam of electrons at the specimen and then detecting newly generated electrons ...

Organic lighting research burns bright

April 12, 2007

The long, challenging technological march from the low-power light bulb Thomas Edison invented to the ultimate in a bright and energy-efficient lighting device may reach fruition in work led by the two ASU researchers.

Recommended for you

Scientists write 'traps' for light with tiny ink droplets

October 23, 2017

A microscopic 'pen' that is able to write structures small enough to trap and harness light using a commercially available printing technique could be used for sensing, biotechnology, lasers, and studying the interaction ...

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Enhancing solar power with diatoms

October 20, 2017

Diatoms, a kind of algae that reproduces prodigiously, have been called "the jewels of the sea" for their ability to manipulate light. Now, researchers hope to harness that property to boost solar technology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.