Atomic Wire with Protective Sheath: Stable Metal Nanowires One Atom Wide Inside Carbon Nanotubes

October 7, 2009,

( -- Wires with atomic dimensions are potential structural elements for future nanoscopic electronic components. Such fine wires have completely new electronic properties. However, apart from the non-trivial production of metallic nanowires, their high chemical reactivity is a critical problem; they are easily oxidized in air and are not stable.

Japanese researchers working with R. Kitaura and H. Shinohara have now developed a new method that is simple and delivers stable nanowires: They deposit metal atoms inside of carbon nanotubes. As the scientists report in the journal , this forms metal wires of individual atoms lined up side-by-side that are so well protected by their sheath that they have long-term stability.

The method of production simply involves heating carbon nanotubes and a metal powder together in a vacuum. It works for all metals that enter into a gaseous phase at relatively low temperatures, such as europium, samarium, , and strontium. The metal atoms almost completely fill the cavity inside the carbon nanotubes. Using europium metal and carbon nanotubes with an inner diameter of about 0.76 nm, the researchers were able to obtain wires made of a single chain of individual . This first true one-dimensional nanowires was also stable after one month of exposure to air.

By using carbon nanotubes with different inner diameters, ultrafine wires with various diameters could be produced, which were for example formed of two or four atomic chains. In comparison to macroscopic europium crystals, the atomic wires demonstrate significantly different electronic and .

The nanowires are an ideal model for the study of one-dimensional phenomena. The researchers now aim to test the properties of the wires with respect to their suitability for use as “wiring” for nanoelectronic components.

More information: Hisanori Shinohara, High-Yield Synthesis of Ultrathin Metal Nanowires in Carbon Nanotubes, Angewandte Chemie International Edition 2009, 48, No. 44, doi: 10.1002/anie.200902615

Provided by Wiley (news : web)

Explore further: Hybrid Structures Combine Strengths of Carbon Nanotubes and Nanowires

Related Stories

In solution, tiny magnetic wires scatter light

March 14, 2005

Maneuvering external magnets, scientists can command the direction in which light bounces off tiny, magnetic wires that sway like matchsticks in thick, slow-moving solutions. Announcing her finding at the 229th meeting of ...

New possibilities for boron nanotubes

September 27, 2007

Even though some scientists have managed to grow boron nanotubes, the nature of their structure is unknown. Different theories have been proposed regarding boron nanotube make-up, but they often result in structures that ...

Researchers Achieve First Electrowetting of Carbon Nanotubes

December 5, 2005

If you can imagine the straw in your soda can being a million times smaller and made of carbon, you pretty much have a mental picture of a carbon nanotube. Scientists have been making them at will for years, but have never ...

Using Nanotubes in Computer Chips

September 10, 2009

( -- MIT materials scientists have developed a new technique for growing carbon nanotubes that could replace the vertical wires in chips, permitting denser packing of circuits.

Recommended for you

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 08, 2009
It's probably easier to discover all the different things that carbon nanotubes CAN'T do, rather than trying to list all the things they can.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.