
 

A trillion triangles: New computer methods
reveal secrets of ancient math problem
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Dr Bill Hart - University of Warwick

Mathematicians from North America, Europe, Australia, and South
America have resolved the first one trillion cases of an ancient
mathematics problem. The advance was made possible by a clever
technique for multiplying large numbers. The numbers involved are so
enormous that if their digits were written out by hand they would stretch
to the moon and back. The biggest challenge was that these numbers
could not even fit into the main memory of the available computers, so
the researchers had to make extensive use of the computers' hard drives.

According to Brian Conrey, Director of the American Institute of
Mathematics, "Old problems like this may seem obscure, but they
generate a lot of interesting and useful research as people develop new
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ways to attack them."

The problem, which was first posed more than a thousand years ago,
concerns the areas of right-angled triangles. The surprisingly difficult
problem is to determine which whole numbers can be the area of a right-
angled triangle whose sides are whole numbers or fractions. The area of
such a triangle is called a "congruent number." For example, the 3-4-5
right triangle which students see in geometry has area 1/2 x 3 x 4 = 6, so
6 is a congruent number. The smallest congruent number is 5, which is
the area of the right triangle with sides 3/2, 20/3, and 41/6. The first few
congruent numbers are 5, 6, 7, 13, 14, 15, 20, and 21. Many congruent
numbers were known prior to the new calculation. For example, every
number in the sequence 5, 13, 21, 29, 37, ..., is a congruent number. But
other similar looking sequences, like 3, 11, 19, 27, 35, ...., are more
mysterious and each number has to be checked individually.

The calculation found 3,148,379,694 new congruent numbers up to a
trillion.

Consequences, and future plans

Team member Bill Hart noted, "The difficult part was developing a fast
general library of computer code for doing these kinds of calculations.
Once we had that, it didn't take long to write the specialized program
needed for this particular computation." The software used for the
calculation is freely available, and anyone with a larger computer can use
it to break the team's record or do other similar calculations.

In addition to the practical advances required for this result, the answer
also has theoretical implications. According to mathematician Michael
Rubinstein from the University of Waterloo, "A few years ago we
combined ideas from number theory and physics to predict how
congruent numbers behave statistically. I was very pleased to see that our
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prediction was quite accurate." It was Rubinstein who challenged the
team to attempt this calculation. Rubinstein's method predicts around
800 billion more congruent numbers up to a quadrillion, a prediction that
could be checked if computers with a sufficiently large hard drive were
available.

History of the problem

The congruent number problem was first stated by the Persian
mathematician al-Karaji (c.953 - c.1029). His version did not involve
triangles, but instead was stated in terms of the square numbers, the
numbers that are squares of integers: 1, 4, 9, 16, 25, 36, 49, ..., or
squares of rational numbers: 25/9, 49/100, 144/25, etc. He asked: for
which whole numbers n does there exist a square a2 so that a2-n and a2+n
are also squares? When this happens, n is called a congruent number.
The name comes from the fact that there are three squares which are
congruent modulo n. A major influence on al-Karaji was the Arabic
translations of the works of the Greek mathematician Diophantus (c.210
- c.290) who posed similar problems.

A small amount of progress was made in the next thousand years. In
1225, Fibonacci (of "Fibonacci numbers" fame) showed that 5 and 7
were congruent numbers, and he stated, but did not prove, that 1 is not a
congruent number. That proof was supplied by Fermat (of "Fermat's last
theorem" fame) in 1659. By 1915 the congruent numbers less than 100
had been determined, and in 1952 Kurt Heegner introduced deep
mathematical techniques into the subject and proved that all the prime
numbers in the sequence 5, 13, 21, 29, ..., are congruent. But by 1980
there were still cases smaller than 1000 that had not been resolved.

Modern results
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In 1982 Jerrold Tunnell of Rutgers University made significant progress
by exploiting the connection (first used by Heegner) between congruent
numbers and elliptic curves, mathematical objects for which there is a
well-established theory. He found a simple formula for determining
whether or not a number is a congruent number. This allowed the first
several thousand cases to be resolved very quickly. One issue is that the
complete validity of his formula depends on the truth of a particular case
of one of the outstanding problems in mathematics known as the Birch
and Swinnerton-Dyer Conjecture. That conjecture is one of the seven
Millenium Prize Problems posed by the Clay Math Institute with a prize
of one million dollars.

The computations

Results such as these are sometimes viewed with skepticism because of
the complexity of carrying out such a large calculation and the potential
for bugs in either the computer or the programming. The researchers
took particular care to verify their results, doing the calculation twice, on
different computers, using different algorithms, written by two
independent groups. The team of Bill Hart (Warwick University, in
England) and Gonzalo Tornaria (Universidad de la Republica, in
Uruguay) used the computer "Selmer" at the University of Warwick.
Selmer is funded by the Engineering and Physical Sciences Research
Council in the UK. Most of their code was written during a workshop at
the University of Washington in June 2008.

The team of Mark Watkins (University of Sydney, in Australia), David
Harvey (Courant Institute, NYU, in New York) and Robert Bradshaw
(University of Washington, in Seattle) used the computer "Sage" at the
University of Washington. Sage is funded by the National Science
Foundation in the US. The team's code was developed during a
workshop at the Centro de Ciencias de Benasque Pedro Pascual in
Benasque, Spain, in July 2009. Both workshops were supported by the
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American Institute of Mathematics through a Focused Research Group
grant from the National Science Foundation.

Source: American Institute of Mathematics
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