Researchers program cells to be remote-controlled by light

September 14, 2009

( -- UCSF researchers have genetically encoded mouse cells to respond to light, creating cells that can be trained to follow a light beam or stop on command like microscopic robots.

This is the first time researchers have been able to import a light controlled "on-off switch" from plants into a mammalian cell to instantly control a variety of cell functions, the researchers said. As such, it offers both a powerful new tool in cancer and cardiovascular research, as well as the potential to ultimately control complex processes such as .

The findings appear in the September 13 advanced online publication of the journal "Nature" and are available at They are reported alongside a paper on similar research led by Klaus Hahn, Ph.D., and his colleagues at the University of North Carolina, Chapel Hill.

Together, the papers are the first to demonstrate that plant light-switches can be imported into mammalian to control complex regulatory processes. The UCSF research is unique in developing a generic plug-and-play switch, based on protein recruitment, which can be wired to control diverse processes in many types of cells and organisms, the researchers said.

The findings could have various therapeutic applications down the road, such as the ability to guide nerve cells to reconnect across a broken spinal pathway in a spinal cord injury, according to Wendell Lim, PhD, one of three senior authors on the paper and the director of the Cell Propulsion Laboratory, a National Institutes of Health Development Center at UCSF and UC Berkeley.

More immediately, the findings offer a new approach for scientific research into the complex regulatory processes involved in diseases like cancer and inflammation, he said.

"This is a powerful tool for cell biology and cancer research," said Lim, who is a professor in the UCSF Department of Cellular and Molecular Pharmacology. "If you have a controllable 'light switch' that is generic enough to use in multiple cell functions, it gives you the ability to control where and when a cell moves, using a simple beam of light, and control what it does when it gets there."

Many cell processes are governed by where and when proteins appear in the cell, Lim explained. When those processes are based on an extremely complex network of signals, such as in diseases like cancer, he added, it's helpful to have an on-off switch to insert into that process.

The research was carried out by Anselm Levskaya, a graduate student in both Lim's laboratory and in the laboratory of Chris Voigt, PhD, a synthetic biologist and assistant professor of pharmaceutical chemistry in the UCSF School of Pharmacy who was also a senior author on the paper.

Levskaya initially looked to plants for proteins that might serve as the light sensor. Plants are known to rely upon phytochromes, or light-sensing signaling proteins, to control a variety of processes, such as a plant's growth toward sunlight and seed germination.

He proposed that these phytochromes could be genetically engineered into mammalian cells and tied to a specific function, in this case, cell movement.

Levskaya identified a pair of interacting proteins from plants, known as the PhyB-PIF interaction, that could be turned on and off like a switch, and then imported that cellular signaling system into live mouse cells in a cellular pathway that controls cell motion. The resulting cells can be pulled by an external beam of dilute red light, or pushed away by an external infrared beam.

"We've been able to use similar light sensors to program bacteria and yeast cells to follow a chain of if-then commands," Voigt said. "What's remarkable here is the ability to, first, do this in mammalian cells, and secondly, find a method to turn them off again after they've performed the function we selected."

The reversible aspect of Levskaya's work is significant, Voigt said. While many methods are aimed at disrupting cellular pathways, most are fairly simple and only work in one direction: they shut a process down, or prevent two proteins from interacting, but they are limited to that one action.

This approach, by contrast, enables researchers to control precisely when the disruption occurs and for how long, then stop it at will.

The work involved a collaboration between three UCSF laboratories: the Voigt Laboratory, which uses synthetic biology to create light switches and sensors in bacteria; the Lim Lab, which studies how complex networks of signaling proteins cause cells to move, grow and differentiate; and the Weiner Lab, led by Orion Weiner, PhD, which uses microscopy to study guided cell movement.

Source: University of California - San Francisco

Explore further: Breakthrough uses light to manipulate cell movement

Related Stories

Breakthrough uses light to manipulate cell movement

August 19, 2009

One of the biggest challenges in scientists' quest to develop new and better treatments for cancer is gaining a better understanding of how and why cancer spreads. Recent breakthroughs have uncovered how different cellular ...

How actin networks are actin'

January 2, 2008

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access ...

Researchers identify 2 key pathways in adaptive response

August 22, 2009

UCSF researchers have identified the two key circuits that control a cell's ability to adapt to changes in its environment, a finding that could have applications ranging from diabetes and autoimmune research to targeted ...

Enzyme's second messenger contributes to cell overgrowth

September 26, 2007

Scientists at the University of California, San Diego (UCSD) School of Medicine have uncovered a novel pathway by which hormones elevated in inflammation, cancer and cell injury act on cells to stimulate their growth.

Genes that control embryonic stem cell fate identified

July 10, 2008

Scientists have identified about two dozen genes that control embryonic stem cell fate. The genes may either prod or restrain stem cells from drifting into a kind of limbo, they suspect. The limbo lies between the embryonic ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.