Lightning’s Mirror Image, Only Much Bigger (w/ Video)

Lightning's mirror image... only much bigger
Trees form a horizon from which a gigantic jet emerges; the thunderstorm is 200 miles away. Credit: Steven Cummer

(PhysOrg.com) -- With a very lucky shot, scientists have captured a one-second image and the electrical fingerprint of huge lightning that flowed 40 miles upward from the top of a storm.

These rarely seen, highly charged meteorological events are known as gigantic jets, and they flash up to the lower levels of space, or ionosphere.

While they don't occur every time there is lightning, they are substantially larger than their downward striking cousins.

"Despite poor viewing conditions as a result of a full moon and a hazy , we were able to clearly capture the gigantic jet," said study leader Steven Cummer, an electrical and computer engineer at Duke University in North Carolina.

A paper reporting Cummer's results appears online today in the journal Nature Geoscience.

Images of gigantic jets have only been recorded on five occasions since 2001. The Duke University team caught a one-second view and measurements that are now giving scientists a much clearer understanding of these rare events.

"This confirmation of visible electric discharges extending from the top of a storm to the edge of the ionosphere provides an important new window on processes in Earth's global electrical circuit," said Brad Smull, program director in NSF's Division of Atmospheric Sciences, which funded the research.

Lightning's mirror image... only much bigger
A gigantic jet, coming from a thunderstorm in N.C. on May 9, 2009, as it expands. Credit: Steve Cummer

"Our measurements show that gigantic jets are capable of transferring a substantial to the lower ionosphere," Cummer said.

"They are essentially upward lightning from thunderclouds that deliver charge just like conventional cloud-to-ground lightning. What struck us was the size of this event."

It appears from the measurements that the amount of electricity discharged by conventional lightning and gigantic jets is comparable, Cummer said.

But the gigantic jets travel farther and faster than conventional lightning because thinner air between the clouds and ionosphere provides less resistance.

Whereas a conventional lightning bolt follows a six-inch channel and travels about 4.5 miles down to earth, the gigantic jet recorded by the scientists contained multiple channels and traveled about 40 miles upward.

Lightning's mirror image... only much bigger
The gigantic jet, pictured as it begins to form in the May 9, 2009 thunderstorm. Credit: Steve Cummer

"Given that reservoirs of electric charge in thunderstorms are the sources for both and gigantic jets, and that both events involve contact between these reservoirs and a very large conducting surface, it is not surprising that their charge transfers are comparable," Cummer said.

Scientists don't know what conditions or what types of storms are conducive to gigantic jet formation.

It has been difficult in the past to obtain images of gigantic jets because they occur so quickly that cameras have to be trained on them at the precise moment they occur.

Cummer caught the gigantic jet almost by accident.

The equipment had been set to capture another phenomenon known as sprites, which were first photographed in 1989.

Sprites are electrical discharges that occur above storm clouds and are colored red or blue, with jellyfish-like tendrils hanging down.

Cummer maintains a low-light video camera trained to the sky and programmed to start recording when specific meteorological conditions occur.

At the same time, other equipment constantly measures radio emissions in the same sector to capture electrical events. A special GPS system ensures that the readings from all the equipment are synchronized.

Cummer is planning to install a low-light, high-speed camera to capture gigantic jet images in color, which could provide additional information about chemical processes and temperatures inside the phenomenon.

Source: National Science Foundation (news : web)


Explore further

Uncovering the mechanisms of lightning varieties

Citation: Lightning’s Mirror Image, Only Much Bigger (w/ Video) (2009, August 23) retrieved 19 September 2019 from https://phys.org/news/2009-08-lightnings-mirror-image-bigger-video.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Aug 23, 2009
Sprites!

Aug 23, 2009
Lightning Sprites:

wiki: lightning sprites

Aug 23, 2009
Truth - the ionosphere does.

Aug 24, 2009
Laser induced lightnings will fuel Tesla's ionospheric wireless energy systems.

KCD
Aug 24, 2009
yup, those are sprites. they are the opposite "strike" to a lightning. they are mostly seen during thunder storms but were rarely taken by scientists.

Aug 24, 2009
Truth - The common lightning goes in both directions,(also it goes multiple times) from the skies to the ground, and vice versa. The color (yeah, they're colorful) of the sprite depends on the height, in which the spray appears above the clouds.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more