Building memories with actin

July 13, 2009,
Activated PAK (red) gathers at synapses (green), and might help consolidate fresh memories. Credit: Rex, C.S., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200901084.

Memories aren't made of actin filaments. But their assembly is crucial for long-term potentiation (LTP), an increase in synapse sensitivity that researchers think helps to lay down memories. In the July 13, 2009 issue of the Journal of Cell Biology, Rex et al. reveal that LTP's actin reorganization occurs in two stages that are controlled by different pathways, a discovery that helps explain why it is easy to encode new memories but hard to hold onto them.

If you can't seem to forget those ABBA lyrics you heard in seventh grade but can't remember Lincoln's Gettysburg address, the vagaries of LTP might be to blame. Neuroscientists think that the process, in which a brain synapse becomes more potent after repeated stimulation, underlies the formation and stabilization of new memories. LTP involves changes in the anatomy of synapses and dendritic spines, a process that depends on reorganization of the supporting actin cytoskeleton. However, researchers didn't know what controlled these changes.

Rex et al. tackled the question by dosing slices of rat with adenosine, a naturally occurring signal that squelches LTP. Adenosine prevents phosphorylation and inactivation of cofilin, an inhibitor of actin filament assembly, the team found. Cofilin's involvement, in turn, implicates signaling cascades headed by GTPases, such as the RhoA-ROCK and Rac-PAK pathways. The researchers showed that a ROCK inhibitor stalled actin polymerization and resulted in a short-lived LTP. A Rac-blocking compound had no effect.

That doesn't mean the Rac-PAK pathway isn't involved in LTP, however. The team discovered that the Rac inhibitor prolonged cells' vulnerability to a molecule that prevents the stabilization of new actin filaments. That result led Rex et al. to conclude that the two pathways exert their effects at different points. The Rho-ROCK pathway initiates the cytoskeletal changes of LTP, and the Rac-PAK pathway solidifies them so that heightened synapse sensitivity can persist. The researchers hypothesize that one pathway encodes memories, while the other makes sure they stick around.

More information: Rex, C.S., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200901084. www.jcb.org

Source: Rockefeller University (news : web)

Explore further: Astrocytes and synaptic plasticity

Related Stories

Astrocytes and synaptic plasticity

October 13, 2008

By mopping up excess neurotrophic factor from neuronal synapses, astrocytes may finely tune synaptic transmission to affect processes such as learning and memory, say Bergami et al.

Research sheds light on memory by erasing it

May 8, 2007

For years, scientists have studied the molecular basis of memory storage, trying to find the molecules that store memory, just as DNA stores genetic memory. In an important study published this week in the Journal of Neuroscience, ...

New research on octopuses sheds light on memory

June 17, 2008

Research on octopuses has shed new light on how our brains store and recall memory, says Dr. Benny Hochner of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University of ...

A budding role for a cellular dynamo

February 18, 2009

Actin, a globular protein found in all eukaryotic cells, is a workhorse that varies remarkably little from baker's yeast to the human body. Part of the cytoskeleton, actin assembles into networks of filaments that give the ...

Recommended for you

Digging deep into distinctly different DNA

January 22, 2018

A University of Queensland discovery has deepened our understanding of the genetic mutations that arise in different tissues, and how these are inherited.

Computational method speeds hunt for new antibiotics

January 22, 2018

A team of American and Russian computer scientists has developed an algorithm that can rapidly search massive databases to discover novel variants of known antibiotics—a potential boon in fighting antibiotic resistance.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.