Light sensor breakthrough could enhance digital cameras

June 18, 2009,

New research by a team of University of Toronto scientists could lead to substantial advancements in the performance of a variety of electronic devices including digital cameras.

Researchers created a light sensor - like a pixel in a - that benefits from a phenomenon known as multi-exciton generation (MEG). Until now, no group had collected an electrical current from a device that takes advantage of MEG.

"Digital cameras are now universal, but they suffer from a major limitation: they take poor pictures under dim light. One reason for this is that the image sensor chips inside cameras collect, at most, one electron's worth of current for every photon (particle of light) that strikes the pixel," says Ted Sargent, professor in U of T's Department of Electrical and Computer Engineering. "Instead generating multiple excitons per photon could ultimately lead to better low-light pictures."

In and digital cameras, particles of light - known as - are absorbed in a semiconductor, such a silicon, and generate excited electrons, known as excitons. The semiconductor chip then measures a current that flows as a result. Normally, each photon is converted into at most one exciton. This lowers the efficiency of solar cells and it limits the sensitivity of digital cameras. When a scene is dimly lit, small portable cameras like those in laptops suffer from noise and grainy images as a result of the small number excitons.

"Multi-exciton generation breaks the conventional rules that bind traditional semiconductor devices," says Sargent. "This finding shows that it's more than a fascinating concept: the tangible benefits of multiple excitons can be seen in a light sensor's measured current."

Source: University of Toronto (news : web)

Explore further: Greatly Improved Solar Cells

Related Stories

Greatly Improved Solar Cells

April 21, 2004

Victor Klimov and Richard Schaller at Los Alamos National Laboratory have enhanced the phenomenon called "impact ionization," which can significantly improve the efficiency of the conversion of solar energy to electrical ...

Researchers send 'heavy photons' over world-record distances

June 21, 2005

Unsurpassed exciton distances, lifetimes may lead to new form of optical communication When light hits a semiconductor material and is absorbed, its photons can become "excitons," sometimes referred to as "heavy photons" ...

Excitons play peek-a-boo on carbon nanotubes

June 7, 2007

In the quantum world, photons and electrons dance, bump and carry out transactions that govern everything we see in the world around us. In this week's issue of Science, French and U.S. scientists describe a new technique ...

Substantial improvement in essential cheap solar cell process

March 20, 2008

A cheap alternative to silicon solar cells can be found in dye-sensitised solar cells. This type of cell imitates the natural conversion of sunlight into energy by, for instance, plants and light-sensitive bacteria. Annemarie ...

Recommended for you

Technology near for real-time TV political fact checks

January 18, 2019

A Duke University team expects to have a product available for election year that will allow television networks to offer real-time fact checks onscreen when a politician makes a questionable claim during a speech or debate.

Privacy becomes a selling point at tech show

January 7, 2019

Apple is not among the exhibitors at the 2019 Consumer Electronics Show, but that didn't prevent the iPhone maker from sending a message to attendees on a large billboard.

China's Huawei unveils chip for global big data market

January 7, 2019

Huawei Technologies Ltd. showed off a new processor chip for data centers and cloud computing Monday, expanding into new and growing markets despite Western warnings the company might be a security risk.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.