Planck Satellite ready to measure the Big Bang

May 11, 2009

Full sky map of predicted CMB temperature fluctuations due to changing gravitational fields in the local universe, which was computed at MPA. Image: Maturi et al. 2007, Astronomy & Astrophysics 476, 83
(PhysOrg.com) -- The last tests of the Ariane 5 rocket system have been finished and ESA's Planck satellite is sitting ready for launch at the Guiana Space Centre in Kourou. Together with ESA's space telescope Herschel, Planck will lift off into space on 14 May to begin its studies of the cosmic microwave radiation and of the clues it gives about the Big Bang, the earliest phases of the cosmic history, and the structure and composition of the Universe. The Max Planck Institute for Astrophysics (MPA) in Garching has developed important software components for Planck and is getting ready to participate in the analysis and scientific interpretation of the mission data.

According to the standard model of cosmology, our Universe began 13.7 billions years ago in a Big Bang, the origin of space and time. The Cosmic Microwave Background (CMB) is the relic heat from this Big Bang, released 380.000 years after beginning and still travelling freely through space today. At that early time, weak fluctuations of matter density were present, which are seen as variations of temperature in the CMB. By observing these fluctuations, cosmologists can infer how the large-scale structure of today’s Universe - galaxies, galaxy clusters and filaments - was formed.

The Planck satellite will be placed at the second Lagrangian point of the Sun-Earth-Moon system (L2), located about 1.5 million kilometres away from the Earth - four times the distance to the Moon. The satellite will spin around its own axis, always point towards the Sun, with each rotation recording another strip of the sky and mapping the sky’s temperature to an accuracy of about one millionth of a degree. The data are sent to Earth and converted into temperature maps of the sky in data processing centres in France and Italy. What the maps look like depends on certain characteristics of the Universe, for example on the curvature of space. For hypothetic Universes with specified properties, computer simulations using the MPA software generate virtual maps which will be compared with maps of the real sky. "From the comparison we can draw conclusions about the structure of our own Universe, for example how much ordinary matter and dark energy exist in it", explains Torsten Enßlin, head of the Planck group at MPA.

The physics of structure formation and the formation of galaxies will be studied via the so-called Sunyaev Zeldovich effect - the heating of CMB photons by scattering in the atmosphere of galaxy clusters. Due to this effect distant galaxy clusters become visible as "shadows" in front the cosmic microwave background.

However the galaxy clusters are only the densest parts of the cosmic matter distribution. 85 percent of the cosmic matter remains invisible and dark. The composition of this is still not known. From their computer simulations, MPA cosmologists have shown how the CMB is influenced the gravitational field of dark matter. The unseen structures of dark matter can therefore be deduced from temperature variations in the CMB. This requires the scientists to analyse the Planck data with statistical methods, obtaining important information on the structure and future development of the Universe.

Moreover, the mission is expected to detect thousands of distant objects in a frequency range barely studied so far, and so to offer new insights into the physics of galaxies, active galactic nuclei and quasars in the submillimetre domain. These will show Planck scientists energetic processes in the immediate vicinity of massive black holes. Planck may also help us to understand the birth of the first stars in the Universe and the structure of our own galaxy, the Milky Way.

"With the start of the Planck satellite a dream comes true", says Rashid Sunyaev, MPA director and pioneer of CMB research. "Planck will provide the most precise data on the early Universe ever. We have never been so close to the Big Bang." "We will understand the past of our Universe’s past and throw a glance at its future", adds Sunyaev’s colleague Simon White. "Will it keep on expanding for ever or some day collapse back upon itself? What is the nature of the mysterious dark energy causing this expansion? Planck will provide an answer to many important questions of cosmology. The satellite is the most powerful tool ever for studying the developed."

Provided by Max Planck Institute

Explore further: ESA's Planck satellite builds on Nobel-prize-winning science

Related Stories

Planck instruments ready for integration

November 16, 2006

Engineers are ready to begin integrating the scientific instruments into ESA's Planck satellite. The pair of instruments will allow the spacecraft to make the most precise map yet of the relic radiation left behind by the ...

Introducing the 'coolest' spacecraft in the universe

February 9, 2007

The European Space Agency's Planck mission, which will study the conditions present in our Universe shortly after the Big Bang, is reaching an important milestone with the integration of instruments into the satellite at ...

Astronomers find gaping hole in the Universe

August 23, 2007

University of Minnesota astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies and gas, as well as the mysterious, unseen “dark ...

Recommended for you

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

Astronomers find a cosmic Titan in the early universe

October 17, 2018

An international team of astronomers has discovered a titanic structure in the early Universe, just two billion years after the Big Bang. This galaxy proto-supercluster, nicknamed Hyperion, is the largest and most massive ...

Researchers investigate the peculiar radio source IC 1531

October 17, 2018

An international team of researchers has investigated a peculiar extragalactic radio source known as IC 1531. The new study analyzes the nature of IC 1531's high-energy emission, suggesting that the source is a radio galaxy. ...

Double dust ring test could spot migrating planets

October 17, 2018

New research by a team led by an astrophysicist at the University of Warwick has a way of finally telling whether newly forming planets are migrating within the disc of dust and gas that typically surrounds stars or whether ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Herries
2.3 / 5 (3) May 14, 2009
GOD created the universe approx 6000 years ago. Google 'radio polonium halos. Top result.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.