New testing facility helps researchers improve land mine detection equipment

May 13, 2009
Georgia Tech Electrical and Computer Engineering professor Waymond Scott sets up an experiment in this new facility that will ultimately help researchers better discriminate between land mines and harmless metal objects. Credit: Georgia Tech Photo: Gary Meek

Researchers at the Georgia Institute of Technology have built a test facility to evaluate and enhance sensors designed to detect buried land mines. The unique automated system measures the response of individual electromagnetic induction sensors or arrays of sensors against land mines buried at many possible angles.

Electromagnetic induction sensors work by sending out magnetic fields and detecting the response from the generated when the field interacts with a metallic target. While simple versions of these sensors are capable of detecting most land mines, advanced sensors are required to tell the difference between a land mine and harmless buried metal objects, which can include bottle tops, nails, shrapnel and spent bullets.

"We built this facility to aid in the development of advanced electromagnetic induction sensors and associated detection algorithms, mainly because little was known about how the signals collected by these sensors from land mines changed when the mines were buried underground at odd angles," said Waymond Scott, a professor in Georgia Tech's School of Electrical and Computer Engineering.

Scott and Gregg Larson, a senior research engineer in Georgia Tech's George W. Woodruff School of Mechanical Engineering, constructed the facility with funding from the U.S. Army and described it at the recent SPIE Defense, Security and Sensing Symposium.

The testing structure was built with five computer-controlled axes - three translational stages and two rotational stages - and one manual axis. During testing, an individual sensor or array of sensors is fixed in the middle of the measurement region while the rotational stages orient a target and move it along a prescribed path around the sensor.

For testing, the researchers place the sensor in the center of the area so that it is located as far as possible from any surrounding metal, including the floor that contains structural steel and the aluminum beams of the positioner frame. In the procedure used to measure individual targets, they also controlled for the response from the surrounding metal structures.

The system can collect measurements of typical targets, including shell casings, wire loops, ball bearings and land mines. The data from each target is plotted as response curves, which are a function of the metal content and structure of the target and help discriminate a land mine from other metal buried in the ground. Previous field tests have shown that the shape of the response curves did not change when targets were buried at different depths, but the researchers wanted to know if the same was true for targets buried at different angles.

"This facility allows us to collect measurements of typical targets and clutter objects with respect to location and orientation, which would be very difficult to measure in the field due to the difficulty of accurately placing and rotating the target," said Scott.

At the symposium, the researchers presented data collected in the facility from three targets - a single wire loop, a composite target with three wire loops and a 9 millimeter shell casing. Their results with the single wire loop and shell casing showed that the shape of the response curve was the same for all of the rotation angles, but the amplitude of the response changed with rotation angle. The more complex three-loop target exhibited changes in the shape and amplitude of the curve when the rotation angle was modified.

The researchers plan to use these results to make improvements to the sensor hardware and processing algorithms. Future efforts in the experimental facility will focus on measuring more targets and investigating methods for summarizing the massive amounts of collected data into simple physical models. The researchers also plan to improve the processing algorithms to help characterize more complicated targets and refine the detection and discrimination methods for electromagnetic induction sensors.

Experiments conducted in the facility will ultimately help researchers better discriminate between land mines and harmless metal objects, which will lead to reduced false alarm rates.

"This facility will help us develop advanced electromagnetic induction sensors that are most effective and able to quickly, accurately and repetitively measure the response of a buried target," noted Scott.

Source: Georgia Institute of Technology

Explore further: Detecting land mines with sound

Related Stories

Detecting land mines with sound

January 23, 2007

Researchers at MIT's Lincoln Laboratory are developing a highly pinpointed sound beam that can detect buried land mines from a safe distance. The new beam will use sound to seek out land mines like a bat uses sonar to hunt ...

Sandia researchers develop better sensor detection system

December 5, 2006

By integrating readily available generic sensors with a more sophisticated sensor, researchers at Sandia National Laboratories have developed a detection system that promises to make it easier to catch perpetrators trying ...

Swimming pool game inspires robot detection

March 18, 2009

Scientists have used a popular kids swimming pool game to guide their development of a system for controlling moving robots that can autonomously detect and capture other moving targets.

New Sensor Detects Direction of Sound Under Water

January 29, 2007

A new sensor that measures the motion created by sound waves under water could allow the U.S. Navy to develop compact arrays to detect the presence of enemy submarines. These new arrays would detect quiet underwater targets, ...

Flexible tactile sensors could help robots work better

May 19, 2005

A robot's sensitivity to touch could be vastly improved by an array of polymer-based tactile sensors that has been combined with a robust signal-processing algorithm to classify surface textures. The work, performed by a ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.