Study first to show evolution's impact on ecosystems

April 1, 2009

Scientists have come to agree that different environments impact the evolution of new species. Now experiments conducted at the University of British Columbia are showing for the first time that the reverse is also true.

Researchers from the UBC Biodiversity Research Centre created mini-ecosystems in large aquatic tanks using different species of three-spine stickleback fish and saw substantial differences in the ecosystems in as little as 11 weeks.

Their findings are published in today's Advanced Online Publication of the journal Nature.

Stickleback fish originated in the ocean but began populating freshwater lakes and streams following the last . Over the past 10,000 years - a relatively short time span in evolutionary terms - different species with distinct physical traits have emerged in some fresh water lakes.

The UBC study involved new species found in British Columbia lakes that have evolved distinct physical traits: limnetic sticklebacks (smaller open water dwellers with narrow mouths), benthic sticklebacks (larger bottom dwellers with a wide gape) and a generalist species to represent the probable ancestor of the two species.

"Simply by what they eat and how they live, even young species that have 'recently' diversified can have a major impact on their food web," says study lead author Luke Harmon, who conducted the study while a post-doctoral fellow at UBC. He is now an assistant professor at the University of Idaho. "This study adds to a broader body of literature showing that matters in important ways."

Further analysis showed the tanks with the two newest species had larger molecules of dissolved organic , or bits of decaying plants and animals. This prevented sunlight from penetrating the water and inhibited plant growth.

"Our study shows that through evolution, sticklebacks can engineer the light environment of their own ecosystems," says co-author Blake Matthews, a UBC post-doctoral fellow who is now a researcher at Eawag, the Swiss Federal Institute of Aquatic Science and Technology. "It also demonstrates how speciation of a predator might alter the evolutionary course of other organisms in the food web."

"As new species arise from a common ancestor and evolve new ways of exploiting the environment, each inadvertently reshapes the dynamics of the ecosystem around it," says co-author UBC Prof. Dolph Schluter. "We are just beginning to understand how."

Source: University of British Columbia (news : web)

Explore further: 'Armored' fish study helps strengthen Darwin's natural selection theory

Related Stories

Follow that prawn

December 17, 2007

A new study from the University of Leicester reveals that prawns can be used by fish species to find the best places to eat.

Choosy females make colourful males

May 9, 2006

Female fish prefer brightly coloured males because they are easier to see and are in better shape concludes Dutch researcher Martine Maan following her study of fish speciation in the East African Lakes. Environmental variation ...

Recommended for you

Molecular microscopy illuminates molecular motor motion

July 25, 2017

A toddler running sometimes loses footing because both feet come off the ground at the same time. Kinesin motors that move materials around in cells have the same problem, which limits how fast they can traverse a microtubule ...

Discovery of why emus are grounded takes flight

July 25, 2017

Researchers from Monash University's Biomedicine Discovery Institute have helped solve the mystery of how emus became flightless, identifying a gene involved in the development and evolution of bird wings.

Breaking boundaries in our DNA

July 25, 2017

Our bodies are composed of trillions of cells, each with its own job. Cells in our stomach help digest our food, while cells in our eyes detect light, and our immune cells kill off bugs. To be able to perform these specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.