Turn back, wayward axon

March 9, 2009,
An elongating axon tip (left) crumples when it encounters RGMa (right). Credit: Hata, K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200807029.

To a growing axon, the protein RGMa is a "Wrong Way" sign, alerting it to head in another direction. As Hata et al. demonstrate in the March 9, 2009 issue of the Journal of Cell Biology, translating that signal into cellular action requires teamwork from two receptors.

During development, new form when the of one neuron reaches another neuron. As an axon searches out the path to its destination, it bends toward so-called attractive guidance molecules and veers away from repulsive guidance molecules such as . For example, if the tip of an axon touches a glial cell instead of a neuron, the extension pulls back. On its membrane the glial cell sports RGMa, which latches onto the receptor neogenin on the axon. Researchers knew that the interaction between RGMa and neogenin halted the axon by activating the GTPase RhoA. However, they didn't know how neogenin switches on RhoA.

Hata et al. discovered that it gets help from another axon membrane receptor called Unc5B. The researchers found that after a dose of RGMa, the tip of a growing axon halted and often retreated. Eliminating Unc5B prevented this collapse.

Neogenin and Unc5B stick together and serve as coreceptors, performing slightly different tasks, Hata et al. conclude. Neogenin's job is to hook up with RGMa. Unc5B, by contrast, never contacts RGMa. Instead, it serves as a docking point for the RhoA activator LARG. Unc5B indirectly switches on RhoA by interacting with LARG.

But that left one further mystery to explain. LARG clings to Unc5B all the time, so why does it fire up RhoA only in response to RGMa? The researchers found that binding of RGMa prodded another , the focal adhesion kinase (FAK), to switch on LARG, allowing activation of RhoA. How RGMa binding triggers FAK is the next question the researchers want to answer.

More information: www.jcb.org, Hata, K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200807029.

Source: Rockefeller University

Explore further: Preterm babies may suffer setbacks in auditory brain development, speech

Related Stories

How developing visual system axons stay in the correct layer

December 8, 2017

Scientists at Tokyo Tech have made an important discovery concerning the development of layer-specific axonal connections in the developing visual system of Drosophila flies. This discovery provides valuable insights into ...

Rebuilding spinal cords with an engineer's toolkit

November 16, 2017

Like an earthquake that ruptures a road, traumatic spinal cord injuries render the body's neural highway impassable. To date, there are neither workable repairs nor detours that will restore signal flow between the brain ...

Recommended for you

Digging deep into distinctly different DNA

January 22, 2018

A University of Queensland discovery has deepened our understanding of the genetic mutations that arise in different tissues, and how these are inherited.

Computational method speeds hunt for new antibiotics

January 22, 2018

A team of American and Russian computer scientists has developed an algorithm that can rapidly search massive databases to discover novel variants of known antibiotics—a potential boon in fighting antibiotic resistance.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.