Mountain on Mars may answer big question

March 4, 2009
The Martian volcano Olympus Mons is about three times the height of Mount Everest, but it's the small details that Rice University professors Patrick McGovern and Julia Morgan are looking at in thinking about whether the Red Planet ever had -- or still supports -- life. Credit: Rice University

The Martian volcano Olympus Mons is about three times the height of Mount Everest, but it's the small details that Rice University professors Patrick McGovern and Julia Morgan are looking at in thinking about whether the Red Planet ever had - or still supports - life.

Using a computer modeling system to figure out how Olympus Mons came to be, McGovern and Morgan reached the surprising conclusion that pockets of ancient water may still be trapped under the mountain. Their research is published in February's issue of the journal Geology.

The scientists explained that their finding is more implication than revelation. "What we were analyzing was the structure of Olympus Mons, why it's shaped the way it is," said McGovern, an adjunct assistant professor of Earth science and staff scientist at the NASA-affiliated Lunar and Planetary Institute. "What we found has implications for life - but implications are what go at the end of a paper."

The Martian volcano Olympus Mons is about three times the height of Mount Everest, but it's the small details that Rice University professors Patrick McGovern and Julia Morgan are looking at in thinking about whether the Red Planet ever had -- or still supports -- life. Credit: Rice University

Co-author Morgan is an associate professor of Earth science.

In modeling the formation of Olympus Mons with an algorithm known as particle dynamics simulation, McGovern and Morgan determined that only the presence of ancient clay sediments could account for the volcano's asymmetric shape. The presence of sediment indicates water was or is involved.

Olympus Mons is tall, standing almost 15 miles high, and slopes gently from the foothills to the caldera, a distance of more than 150 miles. That shallow slope is a clue to what lies beneath, said the researchers. They suspect if they were able to stand on the northwest side of Olympus Mons and start digging, they'd eventually find clay sediment deposited there billions of years ago, before the mountain was even a molehill.

The European Space Agency's Mars Express spacecraft has in recent years found abundant evidence of clay on Mars. This supports a previous theory that where Olympus Mons now stands, a layer of sediment once rested that may have been hundreds of meters thick.

Morgan and McGovern show in their computer models that volcanic material was able to spread to Olympus-sized proportions because of the clay's friction-reducing effect, a phenomenon also seen at volcanoes in Hawaii.

What may be trapped underneath is of great interest, said the researchers. Fluids embedded in an impermeable, pressurized layer of clay sediment would allow the kind of slipping motion that would account for Olympus Mons' spread-out northeast flank - and they may still be there.

Thanks to NASA's Phoenix lander, which scratched through the surface to find ice underneath the red dust last year, scientists now know there's water on Mars. So Morgan and McGovern feel it's reasonable to suspect water may be trapped in pores in the sediment underneath the mountain.

"This deep reservoir, warmed by geothermal gradients and magmatic heat and protected from adverse surface conditions, would be a favored environment for the development and maintenance of thermophilic organisms," they wrote. This brings to mind the primal life forms found deep in Earth's oceans, thriving near geothermal vents.

Finding a source of heat will be a challenge, they admitted. "We'd love to have the answer to that question," said McGovern, noting evidence of methane on Mars is considered by some to be another marker for life. "Spacecraft up there have the capability to detect a thermal anomaly, like a magma flow or a volcano, and they haven't.

"What we need is 'ground truth' - something reporting from the surface saying, 'Hey, there's a Marsquake,' or 'Hey, there's unusual emissions of gas.' Ultimately, we'd like to see a series of seismic stations so we can see what's moving around the planet."

More information: The paper appears online in Geology at: geology.gsapubs.org/cgi/content/abstract/37/2/139 .

Source: Rice University

Explore further: Discovery of boron on Mars adds to evidence for habitability

Related Stories

The Meandering Channels of Mars

December 10, 2009

Sinuous channels on the Martian surface may be evidence of relatively recent rainfall. Researchers plan to test this hypothesis by studying sinuous streams on Earth.

Mars rock-ingredient stew seen as plus for habitability

December 13, 2016

NASA's Curiosity rover is climbing a layered Martian mountain and finding evidence of how ancient lakes and wet underground environments changed, billions of years ago, creating more diverse chemical environments that affected ...

Recommended for you

Solar eruptions could electrify Martian moons

October 18, 2017

Powerful solar eruptions could electrically charge areas of the Martian moon Phobos to hundreds of volts, presenting a complex electrical environment that could possibly affect sensitive electronics carried by future robotic ...

Potential human habitat located on the moon

October 18, 2017

A study published in Geophysical Research Letters confirms the existence of a large open lava tube in the Marius Hills region of the moon, which could be used to protect astronauts from hazardous conditions on the surface.

In search of the ninth planet

October 17, 2017

A University of Michigan doctoral student has logged two pieces of evidence that may support the existence of a planet that could be part of our solar system, beyond Neptune.

Microbes leave 'fingerprints' on Martian rocks

October 17, 2017

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist ...

To keep Saturn's A ring contained, its moons stand united

October 17, 2017

For three decades, astronomers thought that only Saturn's moon Janus confined the planet's A ring - the largest and farthest of the visible rings. But after poring over NASA's Cassini mission data, Cornell astronomers now ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (1) Mar 05, 2009
"What we need is 'ground truth' - something reporting from the surface saying, 'Hey, there's a Marsquake,' or 'Hey, there's unusual emissions of gas.'

NO, NO, NO, we don't need more "suggestive" experiments. What we do need is an instrument like a GC or LC/mass spec to detect the building blocks of life on the surface of Mars in an obviously wet area near the equator.
Another "Phoenix" in a permanently frozen, dead polar region using some crude, pre-1950's oven technique to heat soil samples to see if something de-gases is not what we the people need. Phoenix was a clever half billion dollar obfuscation.

Since, the detection of life by the Viking mission in the 70's, (that NASA insufficiently explained away as a chemical reaction - read the experiment online and look at the daily rise and fall of CO2), the agency has carefully avoided sending ANY device that can detect life directly or indirectly.

Can anyone explain why this is so? (I expect to immediately get 1's for this post from the NASA/JPL lurkers.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.