'Holy powder' ingredient makes membranes behave for better health

March 6, 2009

Revered in India as "holy powder," the marigold-colored spice known as turmeric has been used for centuries to treat wounds, infections and other health problems. In recent years, research into the healing powers of turmeric's main ingredient, curcumin, has burgeoned, as its astonishing array of antioxidant, anti-cancer, antibiotic, antiviral and other properties has been revealed.

Yet little has been known about exactly how curcumin works inside the body.

Now, University of Michigan researchers led by Ayyalusamy Ramamoorthy have discovered that curcumin acts as a disciplinarian, inserting itself into cell membranes and making them more orderly, a move that improves cells' resistance to infection and malignancy.

"The membrane goes from being crazy and floppy to being more disciplined and ordered, so that information flow through it can be controlled," said Ramamoorthy, a professor of chemistry and biophysics. The findings were published online March 3 in the Journal of the American Chemical Society.

The research project melds Ramamoorthy's past with his current scientific interests. As a child in India, he was given turmeric-laced milk to drink when he had a cold, and he breathed steam infused with turmeric to relieve congestion. Now as researcher he is fascinated with proteins that are associated with biological membranes, and he uses a technique called solid-state NMR spectroscopy to reveal atom-level details of these important molecules and the membranous milieu in which they operate.

"Probing high-resolution intermolecular interactions in the messy membrane environment has been a major challenge to commonly-used biophysical techniques," Ramamoorthy said. His research group recently developed the two-dimensional solid-state NMR technique that they used to probe curcumin-membrane communication in this study.

Scientists have speculated that curcumin does its health-promoting work by interacting directly with membrane proteins, but the U-M findings challenge that notion. Instead, the researchers found that curcumin regulates the action of membrane proteins indirectly, by changing the physical properties of the membrane.

Ramamoorthy's group now is collaborating with chemistry professor Masato Koreeda and U-M Life Sciences Institute researcher Jason Gestwicki to study a variety of curcumin derivatives, some of which have enhanced potency. "We want to see how these various derivatives interact with the membrane, to see if the interactions are the same as what we have observed in the current study," Ramamoorthy said. "Such a comparative study could lead to the development of potent compounds to treat infection and other diseases."

In a related line of research, Ramamoorthy's team is using the same methods to investigate the effects of curcumin on the formation of amyloids---clumps of fibrous protein believed to be involved in type 2 diabetes, Alzheimer's disease, Parkinson's disease, and many other maladies. In addition, the researchers are looking to see whether other natural products, such as polyphenols (compounds found in many plant foods that are known to have antioxidant properties) and capsaicin (a pain reliever derived from hot peppers), interact with membranes in the same way as curcumin.

More information: Journal of the American Chemical Society: pubs.acs.org/journal/jacsat

Source: University of Michigan

Explore further: Researchers discover an Achilles heel in a lethal leukemia

Related Stories

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017

Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Infection mechanism of Rift Valley fever virus identified

November 10, 2017

Rift Valley fever virus, transmitted by mosquitoes, is responsible for outbreaks in livestock in Africa and can also be fatal in humans. Scientists from the Institut Pasteur and the CNRS, working with the University of Göttingen, ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

vlam67
4 / 5 (1) Mar 07, 2009
Time for peer reviewed papers on centuries old remedies. This will enormously boost their effectiveness.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.