New genre of sugar-coated 'quantum dots' for drug delivery

March 4, 2009

(PhysOrg.com) -- Scientists in Switzerland are reporting an advance that could help tap the much-heralded potential of “quantum dots”— nanocrystals that glow when exposed to ultraviolet light — in the treatment of cancer and other diseases. They are publishing the first study showing that giving quantum dots an icing-like cap of certain sugars makes these nanoparticles accumulate in the liver but not other parts of the body.

That selective targeting could be used to deliver anti-cancer drugs to one organ, without causing the body-wide side-effects that occur with existing cancer drugs, they suggest. Their study is in the Feb. 18 issue of the Journal of the American Chemical Society.

In the new report, Peter H. Seeberger and colleagues note that quantum dots, about 1/5,000th the width of a human hair, are used in solar cells, medical diagnostic imaging, and electronics. Scientists believe these particles also show promise for drug delivery for treating cancer and other diseases. However, researchers still have not found an ideal way to target these dots to specific tissues or organs in order to maximize their effectiveness and limit toxicity.

They describe development of a new type of quantum dot coated with certain sugar molecules that are attracted to receptors in specific tissues and organs. In a study with laboratory mice, the scientists coated quantum dots with either mannose or galactosamine, two sugars that accumulate selectively in the liver. The sugar-coated dots became three times more concentrated in the mice livers than the regular dots, demonstrating their higher specificity, the researchers say.

More information: Journal of the American Chemical Society, “In Vitro Imaging and in Vivo Liver targeting with Carbohydrate Capped Quantum Dots”

Provided by ACS

Explore further: Firefox Quantum is browser overhaul and tryouts hail speed

Related Stories

A simple soak for a solar tune-up

November 13, 2017

The performance of solar cells that consist of semiconductor nanoparticles surrounded by ligand molecules is now easier to control. Researchers from KAUST have developed a method that enhances the ability of these colloidal ...

Quantum dots visualize tiny vibrational resonances

October 30, 2017

In the late 18th century, Ernst Chladni, a scientist and musician, discovered that the vibrations of a rigid plate could be visualized by covering it with a thin layer of sand and drawing a bow across its edge. With the bow ...

Recommended for you

Clothing fabric keeps you cool in the heat

November 16, 2017

(Phys.org)—Researchers have designed a thermal regulation textile that has a 55% greater cooling effect than cotton, which translates to cooler skin temperatures when wearing clothes made of the new fabric. The material ...

Graphene water filter turns whisky clear

November 14, 2017

Previously graphene-oxide membranes were shown to be completely impermeable to all solvents except for water. However, a study published in Nature Materials, now shows that we can tailor the molecules that pass through these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.