Nanoparticle 'smart bomb' targets drug delivery to cancer cells

February 12, 2009

Researchers at North Carolina State University have successfully modified a common plant virus to deliver drugs only to specific cells inside the human body, without affecting surrounding tissue. These tiny "smart bombs" - each one thousands of times smaller than the width of a human hair - could lead to more effective chemotherapy treatments with greatly reduced, or even eliminated, side effects.

Drs. Stefan Franzen, professor of chemistry, and Steven Lommel, professor of plant pathology and genetics, collaborated on the project, utilizing the special properties of a fairly common and non-toxic plant virus as a means to convey drugs to the target cells.

The researchers say that the virus is appealing in both its ability to survive outside of a plant host and its built-in "cargo space" of 17 nanometers, which can be used to carry chemotherapy drugs directly to tumor cells. The researchers deploy the virus by attaching small proteins, called signal peptides, to its exterior that cause the virus to "seek out" particular cells, such as cancer cells. Those same signal peptides serve as "passwords" that allow the virus to enter the cancer cell, where it releases its cargo.

"We had tried a number of different nanoparticles as cell-targeting vectors," Franzen says. "The plant virus is superior in terms of stability, ease of manufacture, ability to target cells and ability to carry therapeutic cargo."

Calcium is the key to keeping the virus' cargo enclosed. When the virus is in the bloodstream, calcium is also abundant. Inside individual cells, however, calcium levels are much lower, which allows the virus to open, delivering the cancer drugs only to the targeted cells.

"Another factor that makes the virus unique is the toughness of its shell," Lommel says. "When the virus is in a closed state, nothing will leak out of the interior, and when it does open,
it opens slowly, which means that the virus has time to enter the cell nucleus before deploying its cargo, which increases the drug's efficacy."

The researchers believe that their method will alleviate the side effects of common chemotherapy treatments, while maximizing the effectiveness of the treatment.

Source: North Carolina State University

Explore further: By far, men garner most coveted speaking slots at virology meetings

Related Stories

Closing in on a universal flu vaccine

June 20, 2017

Unreliable yearly flu jabs could be a thing of the past as researchers close in on technology that will take down the deadly virus once and for all.

How to build an artificial nano-factory to power our futures

June 19, 2017

Many bacteria contain little factories for different purposes. They can make sugars from carbon dioxide to fuel life, or digest certain compounds that would be toxic for the cell, if the digestion took place outside of these ...

Plant compound more powerful than AZT against HIV

June 15, 2017

A plant found throughout Southeast Asia traditionally used to treat arthritis and rheumatism contains a potent anti-HIV compound more powerful than the drug AZT, according to a new paper published in the Journal of Natural ...

Video imaging reveals how immune cells sense danger

May 11, 2017

How do T cells, the beat cops of the immune system, detect signs of disease without the benefit of eyes? Like most cells, they explore their surroundings through direct physical contact, but how T cells feel out intruders ...

Recommended for you

Nanostructures taste the rainbow

June 28, 2017

Engineers at Caltech have for the first time developed a light detector that combines two disparate technologies—nanophotonics, which manipulates light at the nanoscale, and thermoelectrics, which translates temperature ...

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...

Ruthenium rules for new fuel cells

June 28, 2017

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Feb 12, 2009
Just COOL those cells and you will not have to KILL them. Their mitosis rate will slow and the mitochondria will regain control! You will be right back in there killing more cells next year!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.