Research advances nanowire technology for large-scale applications

February 26, 2009

(PhysOrg.com) -- Researchers at Northeastern created a network of nanowires that can be scaled up more efficiently and cost-effectively to create displays such as the NASDAQ sign in New York City’s Times Square.

Using Gallium nitride (GaN), a highly effective semiconductor material, the team created, for the first time, a horizontally aligned network of GaN nanowires, which are integral components in the development of electrical circuits in the nanoscale. GaN is currently used to create light-emitting diodes (LED) and blue and ultra-violet emitting lasers.

“Making devices that emit blue light and ultra-violet light is currently very expensive,” said Latika Menon, assistant professor of physics and co-author of the study. “The horizontal structure of the GaN nanowire network will result in a more cost-effective way to advance this technology.”

Electrodes allow for the flow of electricity between GaN nanowires and electrical wires, and the horizontal structure of the GaN nanowire networks are more easily attached to electrodes than vertical networks. In addition, the GaN nanowires have a cubic structure, with optical and transport properties that are more advanced than other nanowire structures, resulting in a more effective electrical circuit.

In terms of manufacturing, these horizontal network patterns can also be scaled up to large wafer sizes that are more compatible with the technology used to integrate them into new nanoelectronic devices. These devices connect nanotechnology and electronic devices to develop smaller and less costly manufacturing processes and products.

The research, published in a recent issue of the “Journal of Materials Chemistry,” was funded by the National Science Foundation (NSF) and the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern. Other Northeastern researchers participating in this project include physicist Zhen Wu, as well as Myung Gwan Hahm and Yung Joon Jung from the department of mechanical and electrical engineering.

Provided by Northeastern University

Explore further: New membrane-based antenna much smaller than conventional ones

Related Stories

Sensor awakens only in the presence of a signal of interest

September 12, 2017

Here's your task. Build a tiny sensor that detects a signature of infrared (IR) wavelengths characteristic of a hot tailpipe, a wood fire, or perhaps even a human being. Design the sensor so that it can remain dormant and ...

Self-charging battery gets boost from nanocomposite film

February 24, 2014

(Phys.org) —In 2012, a research team at the Georgia Institute of Technology led by Professor Zhong Lin Wang fabricated the first self-charging power pack, or battery, that can be charged without being plugged into a wall ...

Communication devices enable children with disabilities

April 8, 2015

An interdisciplinary group of Northeastern University students and faculty have combined their knowledge of engineering and physical therapy to design, develop, and then deliver two low-cost communication devices to disabled ...

Robotic Devices Providing Home-Care Rehabilitation (w/ Video)

November 13, 2009

(PhysOrg.com) -- A group of researchers, at Northeastern University, have developed several portable robotic devices to aid in the rehabilitation process of stroke victims. These devices are small enough for patients to continue ...

Recommended for you

The microscopic origin of efficiency droop in LEDs

November 21, 2017

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

Borophene shines alone as 2-D plasmonic material

November 20, 2017

An atom-thick film of boron could be the first pure two-dimensional material able to emit visible and near-infrared light by activating its plasmons, according to Rice University scientists.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.