New Synthetic Compound Message to Drug-Resistant Bacteria: 'Resistance is Futile'

January 21, 2009

(PhysOrg.com) -- Scientists at the University of Massachusetts Amherst and the University of Illinois have developed a smart new synthetic compound that not only targets some drug-resistant bacteria and kills them, but the new antibiotic takes away the germs' most potent defense - the mutation that could provide new resistance will also kill them, leaving no escape.

As polymer scientist Gregory Tew at UMass explains, “This newly designed molecule inserts into the cell wall of bacteria and changes its curvature. Instead of forming stable membranes, cells treated with the new antibiotic have increased curvature which makes a hole form in the wall, killing the cell.” Tew says the new antibiotic uses compounds called phenylene ethylnylenes that mimic the body’s own antimicrobial proteins.

“Understanding the details of how this antibiotic works is essential for expanding our tools for fighting infectious diseases,” Tew notes. Bacterial resistance to conventional antibiotics is a major public health problem. Penicillin could once be counted on to kill bacteria that can cause pneumonia, for example, but germs in the Staphylococcus and Enterococcus families have evolved so penicillin no longer works. Now, they’ve also learned to resist newer antibiotics such as tetracycline, streptomycin and gentamicin.

The new compound’s hole-punching ability depends strongly on the presence of a lipid or fat molecule, phosphoethanolamine (PE), found in bacterial cell membranes, he adds. “This new antibiotic likes PE-rich membranes, which is ideal because gram-negative bacteria are rich in PE while human cells are not.”

In their experiment reported in the last 2008 issue of the Proceedings of the National Academy of Sciences, Tew and co-author Gerard Wong of the University of Illinois compared survival rates in two strains of E. coli bacteria grown in separate Petri dishes. One group was engineered so it lacked the PE lipid in its membranes while the other group had the PE layer.

The researchers treated both groups with the new synthetic hole-punching antimicrobial, at the same time giving two more groups a traditional antibiotic, tobramycin that does not attack the PE membrane but rather a cell structure called a ribosome. Results show that the new antibiotic successfully attacked the E. coli strain rich in PE, but it did not work against the other strain without PE. By contrast, tobramycin killed both strains, pinpointing that the bacteria’s vulnerability to the new compound lies in its PE layer.

Provided by University of Massachusetts Amherst

Explore further: Reprogramming bacteria instead of killing them could be the answer to antibiotic resistance

Related Stories

Specially designed protein fights several species of bacteria

December 13, 2017

As resistance to existing antibiotics increases, new approaches to serious bacterial infections are needed. Now researchers at Lund University in Sweden, together with colleagues at the University of Massachusetts Medical ...

New active ingredients from the toolbox

December 13, 2017

Microorganisms often produce natural products in a step-by-step manner similar to an assembly line. Examples of such enzymes are non-ribosomal peptide synthetases (NRPS). Researchers at Goethe University Frankfurt have now ...

Teaching antibiotics to be more effective killers

December 12, 2017

Research from the University of Illinois at Chicago suggests bond duration, not bond tightness, may be the most important differentiator between antibiotics that kill bacteria and antibiotics that only stop bacterial growth.

Researchers develop powerful new method for microbiome analysis

December 11, 2017

Scientists from the Icahn School of Medicine at Mount Sinai, Sema4, and collaborating institutions New York University and the University of Florida today published a report detailing their new, more accurate method for identifying ...

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Loose skin and 'slack volume' protect Hagfish from shark bites

December 14, 2017

Chapman University has published new research showing how hagfishes survive an initial attack from predators before they release large volumes of slime to defend themselves. Because the slime is released after they are attacked, ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Szkeptik
5 / 5 (1) Jan 21, 2009
They shouldn't say "wall" when they mean "membrane" as bacteria have both and they are two completely different layers made of different materials.

Also the abstract says that mutations would kill them, but I don't see how that would happen. If they could create a strain of bacteria in the lab that lacked PE than evolution can do it too, although getting rid of one of the basic phospholipids entirely will require a sizeable leap.
el_gramador
not rated yet Jan 22, 2009
Hence Szkptik it's actually not a bad idea to use it against bacteria that have evolved resistance. Rather than continue with the same tactics, change the plan and destroy the support beams of the cell. In all likeliness it will be evolved, but to avoid destroying structure and keeping ability is difficult even for the most complex organisms. This might actually be a step in the right direction. Especially given the damaged RNA and DNA can be repaired, while essential components of the cell cannot.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.