Surgical Implants Coated with One of "Nature's Antibiotics" Could Prevent Infection

January 29, 2009,

(PhysOrg.com) -- Researchers at the University of British Columbia have discovered a mimic of one of "nature's antibiotics" that can be used to coat medical devices to prevent infection and rejection.

The study, released today in the journal Chemistry and Biology, found that a synthetic form, short tethered cationic antimicrobial peptides (peptide), can protect surfaces, like those of medical devices, killing bacteria and fungi that come into contact with them. Peptides are small proteins.

Medical devices such as surgical implants, catheters, hip replacements, and joint prostheses have the potential to become infected with bacteria, leading to many medical problems including degeneration or rejection of the implant. Currently, the metal silver is sometimes used to coat medical devices because of its antimicrobial properties.

Nature’s antibiotics are short naturally peptides that are produced by all complex organisms including humans and animals, for protection against microbial infections. These peptides can be found in cells and tissues, on the skin and mucosal surfaces and in fluids like blood, sweat and tears.

“The rapid progress of biomedical technology and an aging population places increasing demands on medical implants to treat serious tissue disorders and replace organ function,”says Robert Hancock, principal investigator and Canada Research Chair in Pathogenomics and Antimicrobials at UBC's Department of Microbiology and Immunology. “The risk of infection after surgical implantation ranges from one to seven per cent, but is associated with considerable morbidity, repeated surgeries and prolonged therapy.”

“These cationic peptides are currently being developed as soluble antibiotics for administration to patients to combat infection,” says Hancock. “We have developed a new method for finding a variety of effective peptides that can bind to a surface and still kill harmful bacteria and fungus.”

According to Hancock, the special feature of these peptides is that they are active when attached to surfaces. Not all peptides that are effective as antibiotics in solution are also active when bound to surfaces. When bacteria come into contact with these peptides, the bacteria loses its integrity and destroys itself.

“Infections associated with the insertion of surgical implants are a common and serious complication,”says Hancock “Prevention of such infections remains a priority and in particular there is an urgent need to coat the surfaces of medical devices, including implants, with antimicrobial agents to reduce the risk of infection.”

In the field of orthopaedic implant surgery about 2 million fracture-fixation devices and 600,000 joint prostheses are implanted every year in the U.S.A.

Provided by University of British Columbia

Explore further: Novel chemistry turns conventional polymers into biomedical supermaterials

Related Stories

Nano World: Nanofibers for brain repair

March 14, 2006

Self-assembling biodegradable scaffolds made of fibers only nanometers or billionths of a meter wide helped repair brain damage and return vision in surgically blinded hamsters, experts told UPI's Nano World.

Recommended for you

Oceans of garbage prompt war on plastics

December 15, 2018

Faced with images of turtles smothered by plastic bags, beaches carpeted with garbage and islands of trash floating in the oceans, environmentalists say the world is waking up to the need to tackle plastic pollution at the ...

A damming trend

December 14, 2018

Hundreds of dams are being proposed for Mekong River basin in Southeast Asia. The negative social and environmental consequences—affecting everything from food security to the environment—greatly outweigh the positive ...

See a passing comet this Sunday

December 14, 2018

On Sunday, Dec. 16, the comet known as 46P/Wirtanen will make one of the 10 closest comet flybys of Earth in 70 years, and you may even be able to see it without a telescope.

Computing the origin of life

December 14, 2018

As a principal investigator in the NASA Ames Exobiology Branch, Andrew Pohorille is searching for the origin of life on Earth, yet you won't find him out in the field collecting samples or in a laboratory conducting experiments ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.