Researchers discover a protein that amplifies cell death

January 15, 2009
Expression of a small fragment of p115 (green) leads to Cytochrome C (red) release in cells causing cell death. Credit: Albert Einstein College of Medicine

Scientists at Albert Einstein College of Medicine of Yeshiva University have identified a small intracellular protein that helps cells commit suicide. The finding, reported as the "paper of the week" in the January 16th print issue of the Journal of Biological Chemistry, could lead to drugs for combating cancer and other diseases characterized by overproduction of cells. The research was led by the late Dennis Shields, Ph.D., a professor in Einstein's Department of Developmental and Molecular Biology for 30 years, who died unexpectedly in December.

In response to stress or as a natural part of aging, many cells undergo programmed suicide, also known as apoptosis. Cancer cells often become immortal and dangerous by developing the ability to suppress apoptosis.

A decade ago apoptosis was thought to be directed solely by the nucleus and mitochondria of cells. Dr. Shields' laboratory was the first to show that a cellular organelle known as the Golgi apparatus also plays a role in apoptosis.

The Golgi package proteins and other substances made by cells and direct them to their destination within the cell. A protein called p115 is vital for maintaining the structure of the Golgi. In earlier research, Dr. Shields' group demonstrated that the Golgi's p115 protein splits into two pieces early in apoptosis and that the smaller of these protein fragments—205 amino acids in length—helps to maintain the cell-suicide process.

In the present study, the Einstein researchers identified the smallest region of this p115 protein fragment that is required for apoptosis: a peptide of just 26 amino acids in length that exerts its apoptotic action by traveling to the nucleus.

"Dennis Shields was one of our most outstanding scientists," says E. Richard Stanley, Ph.D., chairman of developmental and molecular biology at Einstein. "His efforts to uncover fundamental mechanisms governing how cells work has led to new ways of thinking about apoptosis, in particular, how the Golgi regulates this process."

The paper, by Shaeri Mukherjee and Dennis Shields, is titled "Nuclear Import is Required for the Pro-apoptotic Function of the Golgi Protein p115" and appeared in JBC Papers in Press on November 21, 2008 and in the January 16, 2009 print issue.

Source: Albert Einstein College of Medicine

Explore further: How ribosomes shape the proteome

Related Stories

How ribosomes shape the proteome

December 6, 2017

Cells are crowded with macromolecules, which limits the diffusion of proteins, especially in prokaryotic cells without active transport in the cytoplasm. While investigating the relationship between crowding, ionic strength ...

Common fungus helps dengue virus thrive in mosquitoes

December 7, 2017

A species of fungus that lives in the gut of some Aedes aegypti mosquitoes increases the ability of dengue virus to survive in the insects, according to a study from researchers at Johns Hopkins Bloomberg School of Public ...

New molecule shows promise in HIV vaccine design

October 27, 2017

Researchers at the University of Maryland and Duke University have designed a novel protein-sugar vaccine candidate that, in an animal model, stimulated an immune response against sugars that form a protective shield around ...

Researchers identify defense mechanism of malaria parasite

November 7, 2017

Portuguese researchers at Instituto de Medicina Molecular (iMM) Lisboa have identified a defense mechanism by which the Plasmodium parasite can survive inside its host's liver cells, a crucial stage in which it acquires the ...

Recommended for you

Electromagnetic water cloak eliminates drag and wake

December 11, 2017

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while simultaneously helping it avoid detection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.