Martian rock arrangement not alien handiwork

January 7, 2009

At first, figuring out how pebble-sized rocks organize themselves in evenly-spaced patterns in sand seemed simple and even intuitive. But once Andrew Leier, an assistant geoscience professor at the U of C, started observing, he discovered that the most commonly held notions did not apply.

And even more surprising, was that his findings revealed answers to NASA's questions about sediment transport and surface processes on Mars. Those results are published in this month's edition of Geology.

Leier first studied loose pebbles and rocks, also known as clasts, when he was looking at sand dunes in Wyoming and noticed that the clasts seemed to spread away from each other in an almost organized fashion. It turns out, NASA was examining similar patterns on the sandy surface of Mars.

NASA proposed that wind was moving these rocks around. But Leier, who co-authored the study with Jon Pelletier at the University of Arizona and James Steidtmann at the University of Wyoming, says that would be impossible. They also discovered that rather than being pushed backward by the breeze, clasts actually tend to move into the direction of prevailing winds.

"The wind is less effective at moving clasts on Mars because the atmosphere is less dense," says Leier. "And for the wind to move the rocks downwind, it would have to be moving on the order of 8,000 kilometres an hour."

Instead, the loose sand around clasts is removed by the wind, causing scour-pits to form in front of larger clasts. Eventually, the rocks fall forward (or laterally) into the scours and then, the process repeats. Behind the larger grains, the sand is protected from the wind erosion and so a "sand-shadow" develops. This shadow prevents the clasts from being pushed downwind and from bunching up with one another.

Leier and his team first came up with these results through observation but then took them to a wind tunnel at the University of Wyoming to test the theory. Here, a tightly grouped bunch of small pebbles were buried in sand and then the wind tunnel was activated and results photographed. Surprisingly, as the sand was eroded by the wind, the larger clasts moved into the wind and spread out from one another.

Numerical models, based on the physics of wind transport, were run to test these ideas. Just like what was observed in the wind tunnel, the numerical models predict that as the sand is blown away, the large pebbles will spread out from one another, and often move into the direction of the wind, regardless of their initial configuration.

So through a few simple feedbacks, the larger grains on a windy, sandy surface will inherently spread out and organize (or dis-organize) themselves.

"What I find most interesting about this is that something as seemingly mundane as the distribution of rocks on a sandy, wind-blown surface can actually be used to tell us a lot about how wind-related processes operate on a place as familiar as the Earth and as alien as Mars," says Leier. "It's chaotic and simple at the same time."

Paper: Leier's article Wind-driven reorganization of coarse clasts on the surface of Mars is published in the January 2009 edition of Geology.

Source: University of Calgary

Explore further: New wind tunnel operates quietly at Mach 6, helps shape future aircraft

Related Stories

Sand dunes are important desert dust sources

March 16, 2016

Dust storms are a common occurrence in the deserts of northern China, and has accumulated to great thicknesses to form the vast Chinese loess plateau. Researchers have attempted to locate the most important sources of this ...

Winds drive dune movement on Mars

November 16, 2011

Sand dunes, a common feature on the surface of Mars, can provide a record of recent and past changes. Some dunes near Mars’ polar areas have been observed to move recently due to carbon dioxide ice sublimation, but it ...

Recommended for you

Astronomers study a rare multi-eclipsing quintet of stars

March 23, 2017

(Phys.org)—A team of astronomers led by Krzysztof Hełminiak of the Nicolaus Copernicus Astronomical Center in Toruń, Poland, has investigated an interesting bright quintuple stellar system in which each of the stars is ...

Giant magnetic fields in the universe

March 22, 2017

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

morpheus2012
1 / 5 (1) Jan 08, 2009
yeah right
that comning from the bigest gas giant in the solar system aka nasa

never a straight answer
nothing but lies
http://uk.youtube...fMATbqVc&feature=related
deatopmg
not rated yet Jan 08, 2009
@morpheus2012

NASA may be mostly a bunch of gas bags, as you imply, but generally not at Leier's level. This is a very nice piece of work.

However, Leier's work does not explain the mechanism that results in larger rocks sitting in a moat of sand (vapor [H2O?] discharge under the rocks?) and many more anomalies that are better explained by flowing liquid water in the present.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.