Imitation is not just flattery for Amazon butterfly species

December 2, 2008,

Many studies of evolution focus on the benefits to the individual of competing successfully – those who survive produce the most offspring, in Darwin's classic 'survival of the fittest'. But how does this translate to the evolution of species? A new paper, published in this week's issue of PLoS Biology, studies an aspect of the natural world that, like survival of the fittest individual, is explained by natural selection: namely, mutualism – an interaction between species that has benefits for both. The work shows that some species of butterfly that live alongside one another have evolved in ways that, surprisingly, benefit both species.

Researchers from the University of Edinburgh, the University of Cambridge, the University of Wyoming and the Florida Museum of Natural History studied the behaviour of several species of colourful butterfly in the Amazon jungle. It is often theorised that similar species living in the same environment would best succeed by evolving different preferences and behaviours – to minimise the amount that they have to share resources and compete for survival.

However, this is not always the case. The researchers show that butterfly species that have evolved similar wing patterns – which act as a warning to predators that they are poisonous – are often not evolutionarily close to each other. Thus the similarity is not due to shared ancestry but is an evolutionary adaptation. The similar pattern benefits both species, as predators will only need to learn once to avoid the signal – 'learn', in this context, being a euphemism for eating a poisonous butterfly. The researchers found that species with similar warning patterns have evolved to live in the same territory – flying at the same height and preferring the same forest type - in order to maximise the benefits of their similar appearance. The new paper shows that issues other than pure competition, such as protection from predators, can play an important role in evolution.

Marianne Elias, of the University of Edinburgh's School of Biological Sciences, who led the research, said: "We knew that unrelated animals often develop a similar appearance to reinforce the warning to other animals not to eat them, but until now we didn't know that they would live alongside each other, reinforcing this message to predators to stay away."

Citation: Elias M, Gompert Z, Jiggins C, Willmott K (2008) Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLoS Biol 6(12): e300.doi:10.1371/journal.pbio.0060300
biology.plosjournals.org/perls … journal.pbio.0060300

Source: Public Library of Science

Explore further: As climate changes, so could the genes of the Eastern tiger swallowtail butterfly

Related Stories

At last, butterflies get a bigger, better evolutionary tree

February 15, 2018

For hundreds of years, butterfly collecting has often inspired a special kind of fanaticism, spurring lengthy expeditions, sparking rivalries and prompting some collectors to risk their fortunes and skins in their quest for ...

Exploring the microbiome of an ocean bacteria

February 12, 2018

Adrift on a boat in the middle of the North Pacific Ocean, the most astounding sight is the utter absence of anything to see. The glassy calm water is undisturbed and gently undulating for miles in every direction. Even if ...

On the wings of Lepidoptera

November 28, 2017

The Shirley Richardson Butterfly Garden at Assiniboine Park is testament to our fascination with the colourful insects that bring delight to so many. The beautiful patterns and pleasing textures of their wings attract not ...

Recommended for you

Reinventing the inductor

February 21, 2018

A basic building block of modern technology, inductors are everywhere: cellphones, laptops, radios, televisions, cars. And surprisingly, they are essentially the same today as in 1831, when they were first created by English ...

Scientists create 'Evolutionwatch' for plants

February 21, 2018

Using a hitchhiking weed, scientists from the Max Planck Institute for Developmental Biology reveal for the first time the mutation rate of a plant growing in the wild.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.