Early Virus Detection in Cells Made Possible by New Research

November 25, 2008

The benefits of real-time virus tracking, made possible through research from UCR’s Bourns College of Engineering and the College of Natural and Agricultural Sciences (CNAS) include faster detection and better understanding of antiviral treatments. Work at Bourns and CNAS to provide a significant tool for the rapid detection of viral infection was reported in the Proceedings of the National Academy of Sciences Nov. 11, 2008, edition.

In addition to quick infection detection, the work also has important implications for conducting therapeutic studies of antiviral treatments. Current techniques to detect viruses can take days or weeks.

“If you can detect them earlier and implement prevention procedures, you can delay the infection process,” said Wilfred Chen, professor of chemical and environmental engineering, Bourns College of Engineering, who with student Hsaio-Yun Yeh, Ashok Mulchandani, professor of chemical engineering, and Marylynn Yates, professor of environmental sciences, CNAS, completed the study. The paper is entitled "Visualizing the dynamics of viral replication in living cells via TAT-peptide delivery of nuclease-resistant molecular beacons.”

The UCR team’s study describes using a probe to enter cells, which fluoresces when it detects the viral nucleic acid. Researchers are then able to observe in real time the virus’s reproductive cycle and its spread from cell to cell.

“Our goal was to develop a method to follow virus replication in living cells,” Chen said. “It’s a generalized concept.”

Chen said that while some viruses can replicate quickly, enabling detection within a few days, others can take more than a week to detect using traditional methods.

“We have been working on this for two years and recently had the study published,” said Chen. “Some of the pieces have been demonstrated in the past, but this is the first time we have used all of the pieces together.”

The study determined that this new method of virus tracking would be extremely useful in environmental monitoring and perhaps counterterrorism detection.

Provided by University of California, Riverside

Explore further: Need for speed makes genome editing efficient, if not better

Related Stories

Rapid, easy Zika test developed

September 27, 2017

A new fast, easy and cheap "dipstick" test for the Zika and dengue viruses could revolutionize public health response to dangerous tropical germs, a new study reports.

UA mobile app tracks Zika virus for summer travelers

July 26, 2017

Just because Zika isn't in the news as much lately, doesn't mean the mosquito-borne infection no longer is a health threat. Researchers at the University of Arizona Mel and Enid Zuckerman College of Public Health and public ...

Recommended for you

Spider-web 'labyrinths' may help reduce noise pollution

October 17, 2017

(Phys.org)—Researchers have demonstrated that the geometry of a natural spider web can be used to design new structures that address one of the biggest challenges in sound control: reducing low-frequency noise, which is ...

In search of the ninth planet

October 17, 2017

A University of Michigan doctoral student has logged two pieces of evidence that may support the existence of a planet that could be part of our solar system, beyond Neptune.

A new way to harness wasted methane

October 17, 2017

Methane gas, a vast natural resource, is often disposed of through burning, but new research by scientists at MIT could make it easier to capture this gas for use as fuel or a chemical feedstock.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.